Skip to main content

Advertisement

Log in

Neural network adaptive terminal sliding mode trajectory tracking control for mechanical leg systems with uncertainty

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

This paper proposes an adaptive terminal sliding mode control based on neural block approximation for mechanical leg systems characterized by uncertainty and external disturbances. This control is based on a dynamic model of the mechanical leg and introduces an ideal system trajectory as a constraint. The structure of the paper is as follows. First, the RBF neural network is used to approximate the parameters of the dynamic model in blocks. This process is supplemented with a nonsingular terminal sliding mode surface to accelerate the convergence of tracking errors, and an adaptive law is used to adjust weights online to reconstruct the mechanical leg model. Next, an integral sliding mode control robust component is provided to mitigate external disturbances and correct model inaccuracies. Within this step, the Lyapunov method is used to prove the finite-time stability and uniform boundedness of the control system. Finally, the algorithm is validated and tested using the CAPACE rapid control system on a three-degree-of-freedom mechanical leg platform. The experimental results show that the proposed RBFTSM algorithm performs well in the performance evaluation of the MASE and RMSE values, with high trajectory tracking accuracy, anti-interference ability and strong robustness. Further evidence is presented to demonstrate the effectiveness and practicality of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. An Z, Zhou Z, Li D et al (2023) Dynamic behaviors of an integrated crawler mobile parallel robot in obstacle-crossing. Nonlinear Dyn 111(18):16939–16962. https://doi.org/10.1007/s11071-023-08720-3

    Article  Google Scholar 

  2. Ang KH, Chong G, Li Y (2005) Pid control system analysis, design, and technology. IEEE Trans Control Syst Technol 13(4):559–576. https://doi.org/10.1109/TCST.2005.847331

    Article  MATH  Google Scholar 

  3. Bai W, Xiaoping Liu P, Wang H et al (2022) Adaptive finite-time control for nonlinear multi-agent high-order systems with actuator faults. Int J Syst Sci 53(11):2437–2460. https://doi.org/10.1080/00207721.2022.2053891

    Article  MathSciNet  MATH  Google Scholar 

  4. Cai KX, Phan-Minh T, Chung SJ et al (2023) Rules of the road: Formal guarantees for autonomous vehicles with behavioral contract design. IEEE Trans Robot 39(3):1853–1872. https://doi.org/10.1109/TRO.2023.3247951

    Article  MATH  Google Scholar 

  5. Cao Y, Liu B, Pu J (2023) Robust control for a tracked mobile robot based on a finite-time convergence zeroing neural network. Front Neurorobotics 17:1242063. https://doi.org/10.3389/fnbot.2023.1242063

    Article  MATH  Google Scholar 

  6. Cao Y, Subhashri A, Chandrasekar A et al (2024) Exponential state estimation for delayed competitive neural network via stochastic sampled-data control with markov jump parameters under actuator failure. J Artif Intell Soft Comput Res 14(4):373–385. https://doi.org/10.2478/jaiscr-2024-0020

    Article  MATH  Google Scholar 

  7. Cao Z, Zhao Y, Wu Q (2011) Adaptive trajectory tracking control for a nonholonomic mobile robot. Chin J Mech Eng 24(4):546. https://doi.org/10.3901/CJME.2011.04.546

    Article  MATH  Google Scholar 

  8. Carvajal CP, Andaluz VH, Roberti F et al (2023) Path-following control for aerial manipulators robots with priority on energy saving. Control Eng Pract 131:105401. https://doi.org/10.1016/j.conengprac.2022.105401

    Article  MATH  Google Scholar 

  9. Chandrasekar A, Radhika T, Zhu Q (2022) Further results on input-to-state stability of stochastic cohen-grossberg bam neural networks with probabilistic time-varying delays. Neural Process Lett 54:613–635. https://doi.org/10.1007/s11063-021-10649-w

    Article  MATH  Google Scholar 

  10. Chen G, Jin B, Chen Y (2020) Accurate and robust body position trajectory tracking of six-legged walking robots with nonsingular terminal sliding mode control method. Appl Math Model 77:1348–1372. https://doi.org/10.1016/j.apm.2019.09.021

    Article  MathSciNet  MATH  Google Scholar 

  11. Ebadi K, Bernreiter L, Biggie H et al (2023) Present and future of slam in extreme environments: The darpa subt challenge. IEEE Trans Robot 40:936–959. https://doi.org/10.1109/TRO.2023.3323938

    Article  MATH  Google Scholar 

  12. Farooq MU, Ko SY (2022) A decade of mri compatible robots: systematic review. IEEE Trans Robot 39(2):862–884. https://doi.org/10.1109/TRO.2022.3212626

    Article  MATH  Google Scholar 

  13. Fried J, Leite AC, Lizarralde F (2023) Uncalibrated image-based visual servoing approach for translational trajectory tracking with an uncertain robot manipulator. Control Eng Pract 130:105363. https://doi.org/10.1016/j.conengprac.2022.105363

    Article  MATH  Google Scholar 

  14. Gandarilla I, Santibáñez V, Sandoval J et al (2021) Pid passivity-based control laws for joint position regulation of a self-balancing robot. Control Eng Pract 116:104927. https://doi.org/10.1016/j.conengprac.2021.104927

    Article  MATH  Google Scholar 

  15. Guan Y, Zhuang Z, Zhang C et al (2022) Design and motion planning of a metamorphic flipping robot. In: Actuators, MDPI, p 344. https://doi.org/10.3390/act11120344

  16. Hou X, Li Z, Guo S et al (2022) An improved backstepping controller with an leso and tds for robust underwater 3d trajectory tracking of a turtle-inspired amphibious spherical robot. Machines 10(6):450. https://doi.org/10.3390/machines10060450

    Article  MATH  Google Scholar 

  17. Kenas F, Saadia N, Ababou A et al (2024) Model-free based adaptive finite time control with multilayer perceptron neural network estimation for a 10 dof lower limb exoskeleton. Int J Adapt Control Signal Process 38(2):696–730. https://doi.org/10.1002/acs.3723

    Article  MathSciNet  Google Scholar 

  18. Li H, Hu X, Zhang X et al (2023) Adaptive radial basis function neural network sliding mode control of robot manipulator based on improved genetic algorithm. International Journal of Computer Integrated Manufacturing pp 1–15. https://doi.org/10.1080/0951192X.2023.2294439

  19. Liu G, Sun N, Liang D et al (2022) Neural network-based adaptive command filtering control for pneumatic artificial muscle robots with input uncertainties. Control Eng Pract 118:104960. https://doi.org/10.1016/j.conengprac.2021.104960

    Article  MATH  Google Scholar 

  20. Liu Y, Zhang J (2024) Service function chain embedding meets machine learning: deep reinforcement learning approach. IEEE Trans Netw Serv Manag 21(3):3465–3481. https://doi.org/10.1109/TNSM.2024.3353808

    Article  MATH  Google Scholar 

  21. Madsen E, Rosenlund OS, Brandt D et al (2020) Comprehensive modeling and identification of nonlinear joint dynamics for collaborative industrial robot manipulators. Control Eng Pract 101:104462. https://doi.org/10.1016/j.conengprac.2020.104462

    Article  MATH  Google Scholar 

  22. Peng Z, Song X, Song S et al (2023) Hysteresis quantified control for switched reaction-diffusion systems and its application. Complex Intell Syst 9(6):7451–7460. https://doi.org/10.1007/s40747-023-01135-y

    Article  MATH  Google Scholar 

  23. Rochel P, Ríos H, Mera M et al (2022) Trajectory tracking for uncertain unicycle mobile robots: a super-twisting approach. Control Eng Pract 122:105078. https://doi.org/10.1016/j.conengprac.2022.105078

    Article  MATH  Google Scholar 

  24. Shi D, Zhang J, Sun Z et al (2022) Adaptive sliding mode disturbance observer-based composite trajectory tracking control for robot manipulator with prescribed performance. Nonlinear Dyn 109(4):2693–2704. https://doi.org/10.1007/s11071-022-07569-2

    Article  MATH  Google Scholar 

  25. Shi Q, He S, Wang H et al (2023) Extended state observer based fractional order sliding mode control for steer-by-wire systems. IET Control Theory Appl 18(17):2287–2295. https://doi.org/10.1049/cth2.12569

    Article  MathSciNet  MATH  Google Scholar 

  26. Song Z, Wu B, Zhou T (2019) Trajectory tracking control of a spherical robot based on adaptive pid algorithm. In: Proceedings of the Chinese Control and Decision Conference, IEEE, Nanchang, China, pp 5171–5175. https://doi.org/10.1109/CCDC.2019.8833053

  27. Soyguder S, Boles W (2017) Slegs robot: development and design of a novel flexible and self-reconfigurable robot leg. Ind Robot Int J 44(3):377–391. https://doi.org/10.1108/IR-03-2016-0109

    Article  MATH  Google Scholar 

  28. Tamil Thendral M, Ganesh Babu TR, Chandrasekar A et al (2022) Synchronization of Markovian jump neural networks for sampled data control systems with additive delay components: Analysis of image encryption technique. Math Methods Appl Sci. https://doi.org/10.1002/mma.8774

    Article  MATH  Google Scholar 

  29. Thi KDH, Nguyen MC, Vo HT et al (2019) Trajectory tracking control for four-wheeled omnidirectional mobile robot using backstepping technique aggregated with sliding mode control. In: Proceedings of the 1st International symposium on instrumentation, control, artificial intelligence, and robotics. IEEE, Bangkok, Thailand, pp 131–134. https://doi.org/10.1109/ICA-SYMP.2019.8646041

  30. Wang S, Fan Y, Jin S et al (2023) Improved anti-noise adaptive long short-term memory neural network modeling for the robust remaining useful life prediction of lithium-ion batteries. Reliab Eng Syst Saf 230:108920. https://doi.org/10.1016/j.ress.2022.108920

    Article  MATH  Google Scholar 

  31. Wang S, Wu F, Takyi-Aninakwa P et al (2023) Improved singular filtering-gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-current variations. Energy 284:128677. https://doi.org/10.1016/j.energy.2023.128677

    Article  MATH  Google Scholar 

  32. Winkler AW, Bellicoso CD, Hutter M et al (2018) Gait and trajectory optimization for legged systems through phase-based end-effector parameterization. IEEE Robot Autom Lett 3(3):1560–1567. https://doi.org/10.1109/LRA.2018.2798285

    Article  Google Scholar 

  33. Yan Z, Yang H, Zhang W et al (2022) Robust nonlinear model predictive control of a bionic underwater robot with external disturbances. Ocean Eng 253:111310. https://doi.org/10.1016/j.oceaneng.2022.111310

  34. Yoon Z, Kim JH, Park HW (2023) Invariant smoother for legged robot state estimation with dynamic contact event information. IEEE Trans Robot 40:193–212. https://doi.org/10.1109/TRO.2023.3328202

  35. Yun CG, Sin YC, Ri HR et al (2023) Trajectory tracking control of a three-wheeled omnidirectional mobile robot using disturbance estimation compensator by rbf neural network. J Braz Soc Mech Sci Eng 45(8):432. https://doi.org/10.1007/s40430-023-04340-5

    Article  MATH  Google Scholar 

  36. Zhang D, Han Z, Wang F et al (2021) Proficiency of statistical moment-based methods for analysis of positional accuracy reliability of industrial robots. Int J Mech Mater Des 17:403–418. https://doi.org/10.1007/s10999-021-09532-2

    Article  MATH  Google Scholar 

  37. Zhang J, Liu Y, Ding G et al (2024) Adaptive decomposition and extraction network of individual fingerprint features for specific emitter identification. IEEE Trans Inf Forensics Secur 19:8515–8528. https://doi.org/10.1109/TIFS.2024.3427361

    Article  MATH  Google Scholar 

  38. Zhang L, Su Y, Wang Z (2019) A simple non-singular terminal sliding mode control for uncertain robot manipulators. Proc Inst Mech Eng Pt I J Syst Control Eng 233(6):666–676. https://doi.org/10.1177/0959651818806797

    Article  MATH  Google Scholar 

  39. Zhang Q, Song X, Song S et al (2023) Finite-time sliding mode control for singularly perturbed pde systems. J Frankl Inst 360(2):841–861. https://doi.org/10.1016/j.jfranklin.2022.11.037

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhen S, Meng C, Xiao H et al (2023) Robust approximate constraint following control for scara robots system with uncertainty and experimental validation. Control Eng Pract 138:105610. https://doi.org/10.1016/j.conengprac.2023.105610

    Article  MATH  Google Scholar 

  41. Zhou Q, Yang S, Jiang X et al (2023) Max: A wheeled-legged quadruped robot for multimodal agile locomotion. IEEE Transactions on Automation Science and Engineering pp 1–21. https://doi.org/10.1109/TASE.2023.3345876

Download references

Acknowledgements

The authors would like to thank the editor and anonymous reviewers for their instructive comments and feedback, and we appreciate your warm work earnestly.

Funding

This work is supported by the Guangxi Key Research and Development Program project Group State Epidemic Prevention Robot and Cluster Collaborative Control Platform (Grant No. Guike AB21220039).

Author information

Authors and Affiliations

Authors

Contributions

Likun Hu: writing (reviewing, editing), supervision, project administration, funding acquisition, conceptualization. Minbo Chen: writing (original draft), validation, software, resources, methodology, investigation, formal analysis. Zifeng Liao: writing (reviewing, editing), visualization, software, data curation.

Corresponding author

Correspondence to Likun Hu.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

All authors give their consent.

Human and Animal Ethics

Not applicable.

Consent for Publication

All authors give their consent.

Competing Interests

The authors declare that there are no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Hu, L. & Liao, Z. Neural network adaptive terminal sliding mode trajectory tracking control for mechanical leg systems with uncertainty. Appl Intell 55, 356 (2025). https://doi.org/10.1007/s10489-025-06228-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-025-06228-4

Keywords