Skip to main content
Log in

Room-level localization method in industrial workshops using LiDAR-based point cloud registration and object recognition

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

In this work, we aim to achieve room-level localization for mobile robots in industrial workshops. It is difficult to obtain precise localization information via common methods because of the complexity of the industrial environment. Our findings show that precise room-level localization can be achieved via LiDAR-based point cloud registration and object recognition. For this purpose, we formulate room-level localization as a classification problem. Registration and object recognition are used to extract features from point clouds. After the data enhancement algorithm, called Stacked Auto Encoder is employed to overcome the issue of limited feature data, the neural network algorithm is leveraged to address the classification problem. To this end, we collected point cloud data from industrial workshops and performed experimental validation. We evaluated the recognition performance of the algorithm in a metallurgical workshop and achieved good accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The datasets for this study have been uploaded to GitHub and can be accessed via the following link: https://github.com/lanfengzhiwuZ/Robot_localization.

References

  1. Chung M-A, Lin C-W (2022) An improved localization of mobile robotic system based on AMCL Algorithm. IEEE Sens J 22(1):900–908. https://doi.org/10.1109/JSEN.2021.3126605

    Article  MATH  Google Scholar 

  2. Yu S, Wang C, Yu Z, Li X, Cheng M, Zang Y (2021) Deep regression for LiDAR-based localization in dense urban areas. ISPRS J Photogramm Remote Sens 172:240–252. https://doi.org/10.1016/j.isprsjprs.2020.12.013

    Article  MATH  Google Scholar 

  3. Liu H, Sun F, Fang B, Zhang X (2017) Robotic room-level localization using multiple sets of Sonar measurements. IEEE Trans Instrum Meas 66(1):2–13. https://doi.org/10.1109/TIM.2016.2618978

    Article  MATH  Google Scholar 

  4. Yang N, von Stumberg L, Wang R, Cremers D (2020) D3VO: Deep depth, deep pose and deep uncertainty for monocular visual odometry. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Seattle, WA, USA. pp 1278–1289. https://doi.org/10.1109/CVPR42600.2020.00136

  5. Rozenberszki D, Majdik AL (2020) LOL: Lidar-only odometry and localization in 3D point cloud maps. In: 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, Paris, France, pp 4379–4385. https://doi.org/10.1109/ICRA40945.2020.9197450

  6. Bianchi V, Ciampolini P, De Munari I (2019) RSSI-based indoor localization and identification for zigbee wireless sensor networks in smart homes. IEEE Trans Instrum Meas 68(2):566–575. https://doi.org/10.1109/TIM.2018.2851675

    Article  MATH  Google Scholar 

  7. Niu J, Wang B, Cheng L, Rodrigues JJPC (2015) WicLoc: An indoor localization system based on WiFi fingerprints and crowdsourcing. In 2015 IEEE International Conference on Communications (ICC). IEEE, London, pp 3008–3013. https://doi.org/10.1109/ICC.2015.7248785

  8. Yoo W, Kim H, Shin M (2020) Stations-oriented indoor localization (SOIL): a BIM-Based occupancy schedule modeling system. Build Environ 168:106520. https://doi.org/10.1016/j.buildenv.2019.106520

    Article  MATH  Google Scholar 

  9. Li S, Lu J, Chen S (2020) A room-level tag trajectory recognition system based on multi-antenna RFID reader. Comput Commun 149:350–355. https://doi.org/10.1016/j.comcom.2019.10.025

    Article  MATH  Google Scholar 

  10. Liu X, Zhan Y, Cen J (2018) An energy-efficient crowd-sourcing-based indoor automatic localization system. IEEE Sens J 18:6009–6022. https://doi.org/10.1109/JSEN.2018.2842239

    Article  MATH  Google Scholar 

  11. Wang B, Chen C, Xiaoxuan LuC, Zhao P, Trigoni N, Markham A (2020) AtLoc: Attention guided camera localization. AAAI 34(06):10393–10401. https://doi.org/10.1609/aaai.v34i06.6608

    Article  Google Scholar 

  12. Zhang Z, Zhao J, Huang C, Li L (2023) Learning visual semantic map-matching for loosely multi-sensor fusion localization of autonomous vehicles. IEEE Trans Intell Veh 8(1):358–367. https://doi.org/10.1109/TIV.2022.3173662

    Article  MATH  Google Scholar 

  13. Cheong H, Kim E, Park S-K (2019) Indoor global localization using depth-guided photometric edge descriptor for mobile robot navigation. IEEE Sensors J 19(22):10837–10847. https://doi.org/10.1109/JSEN.2019.2932131

    Article  MATH  Google Scholar 

  14. Dubé R et al (2020) SegMap: Segment-based mapping and localization using data-driven descriptors. Int J Robot Research 39(2–3):339–355. https://doi.org/10.1177/0278364919863090

    Article  MATH  Google Scholar 

  15. Li W, Wang C, Lin C, Xiao G, Wen C, Li J (2020) Inlier extraction for point cloud registration via supervoxel guidance and game theory optimization. ISPRS J Photogramm Remote Sens 163:284–299. https://doi.org/10.1016/j.isprsjprs.2020.01.021

    Article  MATH  Google Scholar 

  16. Li J, Zhan J, Zhou T, Bento VA, Wang Q (2022) Point cloud registration and localization based on voxel plane features. ISPRS Journal of Photogrammetry and Remote Sensing 188:363–379. https://doi.org/10.1016/j.isprsjprs.2022.04.017

    Article  MATH  Google Scholar 

  17. Yan B, Fan P, Lei X, Liu Z, Yang F (2021) A real-time apple targets detection method for picking Robot based on improved YOLOv5. Remote Sens 13(9):1619. https://doi.org/10.3390/rs13091619

    Article  MATH  Google Scholar 

  18. Wu Y, Wang Y, Zhang S, Ogai H (2021) Deep 3D object detection networks using LiDAR data: a review. IEEE Sens J 21(2):1152–1171. https://doi.org/10.1109/JSEN.2020.3020626

    Article  MATH  Google Scholar 

  19. Dong Z, Yang B, Liang F, Huang R, Scherer S (2018) Hierarchical registration of unordered TLS point clouds based on binary shape context descriptor. ISPRS J Photogrammet Remote Sens 144:61–79. https://doi.org/10.1016/j.isprsjprs.2018.06.018

    Article  Google Scholar 

  20. Han X-F, Yan X-Y, Sun S-J (2021) Novel methods for noisy 3D point cloud based object recognition. Multimed Tools Appl 80(17):26121–26143. https://doi.org/10.1007/s11042-021-10794-3

    Article  MATH  Google Scholar 

  21. Zhirong Wu et al (2015) “3D ShapeNets: a deep representation for volumetric shapes”. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Boston, MA, USA. pp 1912–1920. https://doi.org/10.1109/CVPR.2015.7298801

  22. Gao H, Cheng B, Wang J, Li K, Zhao J, Li D (2018) Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment. IEEE Trans Ind Inf 14(9):4224–4231. https://doi.org/10.1109/TII.2018.2822828

    Article  MATH  Google Scholar 

  23. Charles RQ, Su H, Kaichun M, Guibas LJ (2017) PointNet: deep learning on point sets for 3D classification and segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI. pp 77–85. https://doi.org/10.1109/CVPR.2017.16

  24. Uy MA, Lee GH (2018) PointNetVLAD: deep point cloud based retrieval for large-scale place recognition. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. IEEE, Salt Lake City, UT, USA, pp 4470–4479. https://doi.org/10.1109/CVPR.2018.00470

  25. Zhang W, Xiao C (2019) PCAN: 3D attention map learning using contextual information for point cloud based retrieval. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE. Long Beach, CA, USA, pp 12428–12437. https://doi.org/10.1109/CVPR.2019.01272

  26. Yang Y, Chen F, Wu F, Zeng D, Ji Y, Jing X-Y (2020) Multi-view semantic learning network for point cloud based 3D object detection. Neurocomputing 397:477–485. https://doi.org/10.1016/j.neucom.2019.10.116

    Article  MATH  Google Scholar 

  27. Ji C-L, Yu T, Gao P, Wang F, Yuan R-Y (2024) Yolo-tla: an efficient and lightweight small object detection model based on YOLOv5. J Real-Time Image Proc 21(4):141. https://doi.org/10.1007/s11554-024-01519-4

    Article  MATH  Google Scholar 

  28. Ji C, Liu G, Zhao D (2022) Monocular 3D object detection via estimation of paired keypoints for autonomous driving. Multimed Tools Appl 81(4):5973–5988. https://doi.org/10.1007/s11042-021-11801-3

    Article  MATH  Google Scholar 

  29. Liu B, Tian B, Wang H, Qiao J, Wang Z (2022) FuseNet: 3D object detection network with fused information for lidar point clouds. Neural Process Lett 54(6):5063–5078. https://doi.org/10.1007/s11063-022-10848-z

    Article  MATH  Google Scholar 

  30. Dong Z et al (2020) Registration of large-scale terrestrial laser scanner point clouds: a review and benchmark. ISPRS J Photogramme Remote Sens 163:327–342. https://doi.org/10.1016/j.isprsjprs.2020.03.013

    Article  MATH  Google Scholar 

  31. Nguyen HL, Belton D, Helmholz P (2019) Review of mobile laser scanning target-free registration methods for urban areas using improved error metrics. Photogram Rec 34(167):282–303. https://doi.org/10.1111/phor.12293

    Article  Google Scholar 

  32. Wei P, Yan L, Xie H, Huang M (2022) Automatic coarse registration of point clouds using plane contour shape descriptor and topological graph voting. Autom Constr 134:104055. https://doi.org/10.1016/j.autcon.2021.104055

    Article  MATH  Google Scholar 

  33. Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21(5):433–449. https://doi.org/10.1109/34.765655

    Article  MATH  Google Scholar 

  34. Rusu RB, Blodow N, Marton ZC, Beetz M (2008) Aligning point cloud views using persistent feature histograms. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, Nice, pp 3384–3391. https://doi.org/10.1109/IROS.2008.4650967

  35. Rusu RB, Blodow N, Beetz M (2009) Fast point feature histograms (FPFH) for 3D registration. In: 2009 IEEE International Conference on Robotics and Automation. IEEE, Kobe, pp 3212–3217. https://doi.org/10.1109/ROBOT.2009.5152473

  36. Zhao Z, Zhang W, Gu J, Yang J, Huang K (2019) Lidar mapping optimization based on lightweight semantic segmentation. IEEE Trans Intell Veh 4(3):353–362. https://doi.org/10.1109/TIV.2019.2919432

    Article  MATH  Google Scholar 

  37. Lin L, Zhang W, Cheng M, Wen C, Wang C (2022) Planar primitive group-based point cloud registration for autonomous vehicle localization in underground parking lots. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2021.3053252

    Article  MATH  Google Scholar 

  38. Guevara J, Gene-Mola J, Gregorio E, Auat Cheein F (2022) 3D spectral graph wavelet point signatures in pre-processing stage for mobile laser scanning point cloud registration in unstructured orchard environments. IEEE Sensors J 22(2):1720–1728. https://doi.org/10.1109/JSEN.2021.3129340

    Article  Google Scholar 

  39. Zhou B, He Y, Huang W, Yu X, Fang F, Li X (2022) Place recognition and navigation of outdoor mobile robots based on random Forest learning with a 3D LiDAR. J Intell Robot Syst 104(4):72. https://doi.org/10.1007/s10846-021-01545-5

    Article  MATH  Google Scholar 

  40. Xu Z, Xu E, Zhang Z, Wu L (2019) Multiscale sparse features embedded 4-points congruent sets for global registration of TLS point clouds. IEEE Geosci Remote Sensing Lett 16(2):286–290. https://doi.org/10.1109/LGRS.2018.2872353

    Article  MATH  Google Scholar 

  41. Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. https://doi.org/10.1109/34.121791

    Article  MATH  Google Scholar 

  42. Quan D et al (2022) Deep feature correlation learning for multi-modal remote sensing image registration. IEEE Trans Geosci Remote Sens 60:1–16. https://doi.org/10.1109/TGRS.2022.3187015

    Article  MATH  Google Scholar 

  43. Li L, Han L, Ding M, Liu Z, Cao H (2022) Remote sensing image registration based on deep learning regression model. IEEE Geosci Remote Sens Lett 19:1–5. https://doi.org/10.1109/LGRS.2020.3032439

    Article  MATH  Google Scholar 

  44. Shi Z, Chang C, Chen H, Du X, Zhang H (2022) PR-NET: progressively-refined neural network for image manipulation localization. Int J Intell Sys 37(5):3166–3188. https://doi.org/10.1002/int.22822

    Article  MATH  Google Scholar 

  45. Du S, Zheng N, Ying S, Liu J (2010) Affine iterative closest point algorithm for point set registration. Pattern Recognit Lett 31(9):791–799. https://doi.org/10.1016/j.patrec.2010.01.020

    Article  MATH  Google Scholar 

  46. Du S, Zheng N, Xiong L, Ying S, Xue J (2010) Scaling iterative closest point algorithm for registration of m–D point sets. J Vis Commun Image Represent 21(5–6):442–452. https://doi.org/10.1016/j.jvcir.2010.02.005

    Article  MATH  Google Scholar 

  47. Zhang W et al (2016) An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens 8(6):501. https://doi.org/10.3390/rs8060501

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libin Tan.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Ethical and informed consent for the data used

This study was performed by the authors, and no human participants other than the authors were involved. Informed consent was obtained from all the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Tan, L., Xu, X. et al. Room-level localization method in industrial workshops using LiDAR-based point cloud registration and object recognition. Appl Intell 55, 373 (2025). https://doi.org/10.1007/s10489-025-06244-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-025-06244-4

Keywords