Skip to main content

Advertisement

Log in

Improved data-driven model-free adaptive control method for an upper extremity power-assist exoskeleton

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

The widespread application of power-assist exoskeletons in physical labor and daily activities has increased the demand for robust control strategies to address challenges in human-exoskeleton interaction. Factors such as collisions and friction introduce uncertain disturbances, making it difficult to establish an accurate human-exoskeleton interaction model, thereby limiting the applicability of current model-based control methods. To overcome these problems, this study proposes an improved data-driven model-free adaptive control method (IMFAC) for the upper extremity power-assist exoskeleton. The stability and convergence of the closed-loop system are rigorously proven. To optimize the initial conditions of IMFAC, we propose an improved snake optimizer (ISO) algorithm incorporating opposition-based learning. The proposed ISO-IMFAC method is evaluated in two scenarios: a nonlinear Hammerstein model benchmark and a physical exoskeleton platform. Experimental results demonstrate that ISO-IMFAC outperforms other popular data-driven control methods across six metrics: integrated absolute error (4.756), mean integral of time-weighted absolute error (0.457), maximum error (1.167), minimum error (0), mean error (0.032), and error standard deviation (0.169). Additionally, the ISO-IMFAC method effectively drives the exoskeleton without relying on its dynamic model. In two load-bearing experiments conducted with five subjects wearing the exoskeleton, the proposed method reduces average muscle exertion per unit time by over 50% and extended working time by more than 180%. These findings highlight the significant potential of the proposed method to enhance user endurance and reduce physical strain, paving the way for practical applications in diverse real-world scenarios. The code is released at https://github.com/Shurun-Wang/ISO-IMFAC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data Availability

Data will be made available on reasonable request.

References

  1. Wijegunawardana I, Ranaweera R, Gopura R (2023) Lower extremity posture assistive wearable devices: a review. IEEE Trans Hum Mach Syst 53(1):98–112. https://doi.org/10.1109/thms.2022.3216761

    Article  Google Scholar 

  2. Gopura R, Bandara D, Kiguchi K, Mann GK (2016) Developments in hardware systems of active upper-limb exoskeleton robots: a review. Rob Auton Syst 75:203–220. https://doi.org/10.1016/j.robot.2015.10.001

    Article  Google Scholar 

  3. Wang Y, Zahedi A, Zhao Y, Zhang D (2022) Extracting human-exoskeleton interaction torque for cable-driven upper-limb exoskeleton equipped with torque sensors. IEEE-ASME T Mech 27(6):4269–4280. https://doi.org/10.1109/tmech.2022.3154087

    Article  Google Scholar 

  4. Kiguchi K, Hayashi Y (2012) An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans Syst Man Cybern Syst 42(4):1064–1071. https://doi.org/10.1109/tsmcb.2012.2185843

    Article  Google Scholar 

  5. Proietti T, Crocher V, Roby-Brami A, Jarrasse N (2016) Upper-limb robotic exoskeletons for neurorehabilitation: a review on control strategies. IEEE Rev Biomed Eng 9:4–14. https://doi.org/10.1109/rbme.2016.2552201

    Article  Google Scholar 

  6. Huang P, Li Z, Zhou M, Li X, Cheng M (2022) Fuzzy enhanced adaptive admittance control of a wearable walking exoskeleton with step trajectory shaping. IEEE Trans Fuzzy Syst 30(6):1541–1552. https://doi.org/10.1109/TFUZZ.2022.3162700

    Article  Google Scholar 

  7. Aslan Ö, Altan A, Hacıoğlu R (2022) Level control of blast furnace gas cleaning tank system with fuzzy based gain regulation for model reference adaptive controller. Processes 10(12):2503. https://doi.org/10.3390/pr10122503

    Article  Google Scholar 

  8. Aslan Ö, Hacıoğlu R, Altan A (2023) Pulverized coal injection tank pressure control using fuzzy based gain regulation for model reference adaptive controller. METEC 6th ESTAD, pp 1–8

  9. Aljuboury AS, Hameed AH, Ajel AR, Humaidi AJ, Alkhayyat A, Mhdawi AKA (2022) Robust adaptive control of knee exoskeleton-assistant system based on nonlinear disturbance observer. Actuators 11(3):78. https://doi.org/10.3390/act11030078

    Article  Google Scholar 

  10. Gui K, Tan UX, Liu H, Zhang D (2019) A new impedance controller based on nonlinear model reference adaptive control for exoskeleton systems. Int J Hum Robot 16(05):1950020. https://doi.org/10.1142/s0219843619500208

    Article  Google Scholar 

  11. Van M, Mavrovouniotis M, Ge SS (2018) An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern Syst 49(7):1448–1458. https://doi.org/10.1109/tsmc.2017.2782246

    Article  Google Scholar 

  12. Wang J, Liu J, Zhang G, Guo S (2022) Periodic event-triggered sliding mode control for lower limb exoskeleton based on human-robot cooperation. ISA Trans 123:87–97. https://doi.org/10.1016/j.isatra.2021.05.039

    Article  Google Scholar 

  13. Sun J, Wang J, Yang P, Guo S (2021) Model-free prescribed performance fixed-time control for wearable exoskeletons. Appl Math Model 90:61–77. https://doi.org/10.1016/j.apm.2020.09.010

    Article  MathSciNet  Google Scholar 

  14. Vallon CS, Borrelli F (2022) Data-driven strategies for hierarchical predictive control in unknown environments. IEEE Trans Autom Sci Eng 19(3):1434–1445. https://doi.org/10.1109/tase.2021.3137769

    Article  Google Scholar 

  15. Tong W, Zhao T, Duan Q, Zhang H, Mao Y (2022) Non-singleton interval type-2 fuzzy PID control for high precision electro-optical tracking system. ISA Trans 120:258–270. https://doi.org/10.1016/j.isatra.2021.03.010

    Article  Google Scholar 

  16. Hamamci SE (2007) An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers. IEEE Trans Autom Control 52(10):1964–1969. https://doi.org/10.1109/tac.2007.906243

    Article  MathSciNet  Google Scholar 

  17. Guan S, Zhuang Z, Tao H, Chen Y, Stojanovic V, Paszke W (2023) Feedback-aided PD-type iterative learning control for time-varying systems with non-uniform trial lengths. Trans Inst Meas Control 45(11):2015–2026. https://doi.org/10.1177/014233122211425

    Article  Google Scholar 

  18. Tao Y, Tao H, Zhuang Z, Stojanovic V, Paszke W (2024) Quantized iterative learning control of communication-constrained systems with encoding and decoding mechanism. Trans Inst Meas Control 46(10):1943–1954. https://doi.org/10.1177/01423312231225782

    Article  Google Scholar 

  19. Jianhong W (2019) Zonotope parameter identification for virtual reference feedback tuning control. Int J Syst Sci 50(2):351–364. https://doi.org/10.1080/00207721.2018.1552767

    Article  MathSciNet  Google Scholar 

  20. Hou Z, Wang Z (2013) From model-based control to data-driven control: survey, classification and perspective. Inform Sci 235:3–35. https://doi.org/10.1016/j.ins.2012.07.014

    Article  MathSciNet  Google Scholar 

  21. Hou Z, Xiong S (2019) On model-free adaptive control and its stability analysis. IEEE Trans Autom Control 64(11):4555–4569. https://doi.org/10.1109/TAC.2019.2894586

    Article  MathSciNet  Google Scholar 

  22. Xian B, Gu X, Pan X (2022) Data driven adaptive robust attitude control for a small size unmanned helicopter. Mech Syst Signal Process 177:109205. https://doi.org/10.1016/j.ymssp.2022.109205

    Article  Google Scholar 

  23. Li D, Hou Z (2020) Perimeter control of urban traffic networks based on model-free adaptive control. IEEE Trans Intell Transp 22(10):6460–6472. https://doi.org/10.1109/tits.2020.2992337

    Article  MathSciNet  Google Scholar 

  24. Wang X, Li X, Wang J, Fang X, Zhu X (2016) Data-driven model-free adaptive sliding mode control for the multi degree-of-freedom robotic exoskeleton. Inform Sci 327:246–257. https://doi.org/10.1016/j.ins.2015.08.025

    Article  MathSciNet  Google Scholar 

  25. Zhao Z, Xiao J, Jia H, Zhang H, Hao L (2021) Prescribed performance control for the upper-limb exoskeleton system in passive rehabilitation training tasks. Appl Sci 11(21):10174. https://doi.org/10.3390/app112110174

    Article  Google Scholar 

  26. Zhang Y, Wang J, Li W, Wang J, Yang P (2018) A model-free control method for estimating the joint angles of the knee exoskeleton. Adv Mech Eng 10(10):1687814018807768. https://doi.org/10.1177/1687814018807768

    Article  Google Scholar 

  27. Alif T, Bhasin S, Garg K, Joshi D (2023) An enhanced model free adaptive control approach for functional electrical stimulation assisted knee joint regulation and control. IEEE Trans Neural Syst Rehabil Eng 31:1584–1593. https://doi.org/10.1109/tnsre.2023.3252882

    Article  Google Scholar 

  28. Barış C, Yanarateş C, Altan A (2024) A robust chaos-inspired artificial intelligence model for dealing with nonlinear dynamics in wind speed forecasting. PeerJ Comput Sci 10:e2393. https://doi.org/10.7717/peerj-cs.2393

    Article  Google Scholar 

  29. Sun L, Jing J, Li C, Lu R (2023) Multi-terrains assistive force parameter optimization method for soft exoskeleton. IEEE Trans Neural Syst Rehabil Eng 31:2028–2036. https://doi.org/10.1109/tnsre.2023.3267062

    Article  Google Scholar 

  30. Zhang P, Zhang J (2022) Lower limb exoskeleton robots’ dynamics parameters identification based on improved beetle swarm optimization algorithm. Robotica 40(8):2716–2731. https://doi.org/10.1017/s0263574721001922

    Article  Google Scholar 

  31. Amiri MS, Ramli R, Ibrahim MF (2019) Hybrid design of PID controller for four DoF lower limb exoskeleton. Appl Math Model 72:17–27. https://doi.org/10.1016/j.apm.2019.03.002

    Article  MathSciNet  Google Scholar 

  32. Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-heuristic optimization algorithm. Knowl Based Syst 242:108320. https://doi.org/10.1016/j.knosys.2022.108320

  33. Hou Z, Jin S (2010) A novel data-driven control approach for a class of discrete-time nonlinear systems. IEEE Trans Control Syst Technol 19(6):1549–1558. https://doi.org/10.1109/TCST.2010.2093136

  34. Pang Z, Ma B, Song W, Liu G (2019) An improved compact form model free adaptive control method. Control Decis 36:436–442. https://doi.org/10.13195/j.kzyjc.2019.0635

    Article  Google Scholar 

  35. Yamamoto T, Takao K, Yamada T (2008) Design of a data-driven PID controller. IEEE Trans Control Syst Technol 17(1):29–39. https://doi.org/10.1109/TCST.2008.921808

    Article  Google Scholar 

  36. Alhijawi B, Awajan A (2024) Genetic algorithms: theory, genetic operators, solutions, and applications. Evol Intell 17(3):1245–1256. https://doi.org/10.1007/s12065-023-00822-6

    Article  Google Scholar 

  37. Shami TM, El-Saleh AA, Alswaitti M, Al-Tashi Q, Summakieh MA, Mirjalili S (2022) Particle swarm optimization: a comprehensive survey. IEEE Access 10:10031–10061. https://doi.org/10.1109/ACCESS.2022.3142859

    Article  Google Scholar 

  38. Makhadmeh SN, Al-Betar MA, Doush IA, Awadallah MA, Kassaymeh S, Mirjalili S, Zitar RA (2023) Recent advances in grey wolf optimizer, its versions and applications. IEEE Access. https://doi.org/10.1109/access.2023.3304889

    Article  Google Scholar 

  39. Shehab M, Mashal I, Momani Z, Shambour MKY, AL-Badareen A, Al-Dabet S, Bataina N, Alsoud AR, Abualigah L (2022) Harris hawks optimization algorithm: variants and applications. Arch Comput Methods Eng 29(7):5579–5603. https://doi.org/10.1007/s11831-022-09780-1

    Article  Google Scholar 

  40. Wang S, Tang H, Gao L, Tan Q (2022) Continuous estimation of human joint angles from sEMG using a multi-feature temporal convolutional attention-based network. IEEE J Biomed Health 26(11):5461–5472. https://doi.org/10.1109/JBHI.2022.3198640

    Article  Google Scholar 

  41. Wang S, Tang H, Wang B, Mo J (2021) A novel approach to detecting muscle fatigue based on semg by using neural architecture search framework. IEEE Trans Neural Netw Learn Syst 34(8):4932–4943. https://doi.org/10.1109/TNNLS.2021.3124330

    Article  Google Scholar 

  42. Martínez A, Durrough C, Goldfarb M (2020) A single-joint implementation of flow control: knee joint walking assistance for individuals with mobility impairment. IEEE Trans Neural Syst Rehabil Eng 28(4):934–942. https://doi.org/10.1109/tnsre.2020.2977339

    Article  Google Scholar 

  43. Lee LW, Li IH (2025) Safety-enhanced control for a muscledrive waist-assistive exoskeleton. Control Eng Pract 156:106182. https://doi.org/10.1016/j.conengprac.2024.106182

    Article  Google Scholar 

Download references

Funding

This work was supported by Pengcheng Shangxue Education Fund, the National Key R&D Program of China under Grant 2017YFE0129700 and China Scholarship Council under Grant 202206690046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tang.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Tang, H., Ping, Z. et al. Improved data-driven model-free adaptive control method for an upper extremity power-assist exoskeleton. Appl Intell 55, 504 (2025). https://doi.org/10.1007/s10489-025-06415-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10489-025-06415-3

Keywords