Skip to main content
Log in

Linear estimation of the physical odometric parameters for differential-drive mobile robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper a calibration technique aimed at identifying the odometric parameters of differential-drive mobile robots is proposed. The algorithm is based on two successive least-squares estimations based on the continuous-time kinematic equations of motion; the time-discretization error, thus, is avoided. The use of the least-squares technique is made possible by working on a linear mapping between the unknowns and the measurements and is not the result of a linearization. Another advantage of the proposed technique is that no specific path is required. The basic technique makes use of video-camera measurements and absolute position readings of the wheels’ encoders; the use of different sensors and measurements of the wheels velocities is also discussed. Experimental results with a mobile robot Khepera II confirm the effectiveness of the proposed technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonelli, G., & Chiaverini, S. (2005). Experimental odometry calibration of the mobile robot Khepera II based on the least-squares technique. In Proceedings 2005 IEEE international conference on robotics and automation (pp. 1477–1482), Barcelona, April 2005.

  • Antonelli, G., Chiaverini, S., & Fusco, G. (2005). A systematic calibration method for odometry of mobile robots based on the least-squares technique: Theory and experimental validation. IEEE Transactions on Robotics, 21(5), 994–1004.

    Article  Google Scholar 

  • Bonnifait, P., Bouron, P., Croubillé, P., & Meizel, D. (2001). Data fusion of four ABS sensors and GPS for an enhanced localization of car-like vehicles. In Proceedings 2001 IEEE International conference on robotics and automation (pp. 1597–1602), Seoul, May 2001.

  • Borenstein, J., & Feng, L. (1996). Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation, 12(6), 869–880.

    Article  Google Scholar 

  • Caltabiano, D., Muscato, G., & Russo, F. (2004). Localization and self calibration of a robot for volcano exploration. In Proceedings 2004 IEEE international conference on robotics and automation (pp. 586–591), New Orleans, LA, April 2004.

  • Chong, K. S., & Kleeman, L. (1997). Accurate odometry and error modelling for a mobile robot. In Proceedings 1997 IEEE international conference on robotics and automation (pp. 2783–2788), Albuquerque, NM, May 1997.

  • Doh, N., Choset, H., & Chung, W. K. (2003). Accurate relative localization using odometry. In Proceedings 2003 IEEE international conference on robotics and automation (pp. 1606–1612), Taipei, TW.

  • Doh, N. L., Choset, H., & Chung, W. K. (June 2006). Relative localization using path odometry information. Autonomous Robots.

  • Goel, P., Roumeliotis, S. I., & Sukhatme, G. S. (1999). Robust localization using relative and absolute position estimates. In Proceedings 1999 IEEE/RSJ international conference on intelligent robots and systems (pp. 1134–1140), Kyongju, KR, October 1999.

  • Hutchinson, S., Hager, G. D., & Corke, P. I. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 551–570.

    Article  Google Scholar 

  • K-Team. http://www.k-team.com/.

  • Kelly, A. (2001). General solution for linearized systematic error propagation in vehicle odometry. In Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems (pp. 1938–1945), Maui, HI, November 2001.

  • Kelly, A. (2002). General solution for linearized stochastic error propagation in vehicle odometry. In Preprints 15th IFAC World Congress, Barcelona, Spain, July 2002.

  • Komoriya, K., & Oyama, E. (1998). Position estimation of a mobile robot using optical fiber gyroscope (OFG). In Proceedings 1994 IEEE/RSJ international conference on intelligent robots and system (pp. 143–149), Munich, September 1994.

  • Larsen, T. D., Bak, M., Andersen, N. A., & ‘Ravn, O. (1998). Location estimation for autonomously guided vehicle using an augmented Kalman filter to autocalibrate the odometry. In Proceedings FUSION98 spie conference, Las Vegas, NE, July 1998.

  • Ljung, L. (1999). System identification: Theory for the user. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Methods for Non-Linear Least Squares Problems. Lyngby: Technical University of Denmark.

    Google Scholar 

  • Martinelli, A. (2002a). The accuracy on the parameter estimation of an odometry system of a mobile robot. In Proceedings 2002 IEEE international conference on robotics and automation (pp. 1378–1383), Washington, DC, May 2002a.

  • Martinelli, A. (2002b). The odometry error of a mobile robot with a synchronous drive system. IEEE Transactions on Robotics and Automation, 18(3), 399–405.

    Article  Google Scholar 

  • Martinelli, A., Tomatis, N., Tapus, A., & Siegwart, R. (2003). Simultaneous localization and odometry calibration. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (pp. 1499–1504), Las Vegas, NE, October 2003.

  • Matrox Electronic Systems Ltd (2001). Matrox imaging library user Guide. Canada.

  • Roy, N., & Thrun, S. Online self-calibration for mobile robots. In Proceedings 1999 IEEE international conference on robotics and automation (pp. 2292–2297), Detroit, MI, May 1999.

  • von der Hardt, H. J., Husson, R., & Wolf, D. (1998). An automatic calibration method for a multisensor system: Application to a mobile robot localization system. In Proceedings 1998 IEEE international conference on robotics and automation (pp. 3141–3146), Leuven.

  • Wang, C. M. (1988). Location estimation and uncertainty analysis for mobile robots. In Proceedings 1988 IEEE international conference on robotics and automation (pp. 1230–1235), Philadelphia, PA.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli.

Additional information

Authors are listed in alphabetical order.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antonelli, G., Chiaverini, S. Linear estimation of the physical odometric parameters for differential-drive mobile robots. Auton Robot 23, 59–68 (2007). https://doi.org/10.1007/s10514-007-9030-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9030-2

Keywords

Navigation