Skip to main content
Log in

Metric embedding of view-graphs

A vision and odometry-based approach to cognitive mapping

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Most recent robotic systems, capable of exploring unknown environments, use topological structures (graphs) as a spatial representation. Localization can be done by deriving an estimate of the global pose from landmark information. In this case navigation is tightly coupled to metric knowledge, and hence the derived control method is mainly pose-based. Alternative to continuous metric localization, it is also possible to base localization methods on weaker constraints, e.g. the similarity between images capturing the appearance of places or landmarks. In this case navigation can be controlled by a homing algorithm. Similarity based localization can be scaled to continuous metric localization by adding additional constraints, such as alignment of depth estimates.

We present a method to scale a similarity based navigation system (the view-graph-model) to continuous metric localization. Instead of changing the landmark model, we embed the graph into the three dimensional pose space. Therefore, recalibration of the path integrator is only possible at discrete locations in the environment. The navigation behavior of the robot is controlled by a homing algorithm which combines three local navigation capabilities, obstacle avoidance, path integration, and scene based homing. This homing scheme allows automated adaptation to the environment. It is further used to compensate for path integration errors, and therefore allows to derive globally consistent pose estimates based on “weak” metric knowledge, i.e. knowledge solely derived from odometry. The system performance is tested with a robotic setup and with a simulated agent which explores a large, open, and cluttered environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Argyros, A. A., Bekris, K. E., & Orphanoudakis, S. C. (2001). Robot homing based on corner tracking in a sequence of a panoramic images. In Proceedings of the IEEE computer society conference on computer vision and pattern recognition (CVPR’01) (Vol. 2).

  • Borenstein, J., & Feng, L. (1996). Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation, 12(6), 869–880.

    Article  Google Scholar 

  • Borg, I., & Groenen, P. (1997). Modern multidimensional scaling. New York: Springer.

    MATH  Google Scholar 

  • Braitenberg, V. (1984). Vehicles. Experiments in synthetic psychology. Cambridge: MIT.

    Google Scholar 

  • Brooks, R. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 1423.

    MathSciNet  Google Scholar 

  • Cartwright, B., & Collett, T. (1983). Landmark learning in bees. Journal of Comparative Physiology A, 151, 521–543.

    Article  Google Scholar 

  • Cassinis, R., Duina, D., Inelli, S., & Rizzi, A. (2002). Unsupervised matching of visual landmarks for robotic homing using Fourier Mellin transform. Robotics and Autonomous Systems, 40, 131–138.

    Article  Google Scholar 

  • Duckett, T., Marsland, S., & Shapiro, J. (2002). Fast, on-line learning of globally consistent maps. Autonomous Robots, 12(3), 287–300.

    Article  MATH  Google Scholar 

  • Floreano, D., & Mondada, F. (1996). Evolution of homing navigation in a real mobile robot. IEEE Transactions on Systems, Man, and Cybernetics, 26, 396–407.

    Article  Google Scholar 

  • Franz, M., Schölkopf, B., Mallot, H., & Bülthof, H. (1998a). Learning view graphs for robot navigation. Autonomous Robots, 5, 111–125.

    Article  Google Scholar 

  • Franz, M., Schölkopf, B., Mallot, H., & Bülthoff, H. (1998b). Where did I take this snapshot? Scene-based homing by image matching. Biological Cybernetics, 79, 191–202.

    Article  MATH  Google Scholar 

  • Frese, U., Larsson, P., & Duckett, T. (2004). A multigrid algorithm for simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2), 1–12.

    Google Scholar 

  • Golfarelli, M., Maio, D., & Rizzi, S. (1998). Elastic correction of dead-reckoning errors in map building. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’98) (pp. 905–911), Victoria, Canada.

  • Golledge, R., & Stimson, R. (1997). Spatial behavior: a geographic perspective. San Francisco: Guilford.

    Google Scholar 

  • Gourichon, S., Meyer, J.-A., & Pirim, P. (2002). Using coloured snapshots for short-range guidance in mobile robots. International Journal of Robotics and Automation, Special issue on Biologically Inspired Robotics, 17(4), 154–162.

    Google Scholar 

  • Gutmann, J.-S., & Konolige, K. (1999). Incremental mapping of large cyclic environments. In Proceedings of the IEEE international symposium on computational intelligence in robotics and automation (CIRA) (pp. 318–325), Monterey, California.

  • Hafner, V., & Möller, R. (2001). Learning of visual navigation strategies. In M. Quoy, P. Gaussier, & J. Wyatt (Eds.), Proceedings of the European workshop on learning robots (EWLR-9) (pp. 47–56), Prague.

  • Hübner, W. (2005). From homing behavior to cognitive mapping, integration of egocentric pose relations and allocentric Landmark information in a graph model. PhD thesis, Universität Bremen.

  • Hutchinson, S., Hager, G., & Corke, P. (1996). A tutorial on visual servo control. IEEE Transactions on Robotics and Automation, 12(5), 651–670.

    Article  Google Scholar 

  • Jähne, B. (Ed.). (1999). Handbook of computer vision and applications. New York: Academic Press.

    MATH  Google Scholar 

  • Kaelbling, L., Littman, M., & Moore, A. (1996). Reinforcement learning: a survey. Journal of Artificial Intelligence Research, 4, 237–285.

    Google Scholar 

  • Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119, 191–233.

    Article  MATH  MathSciNet  Google Scholar 

  • Lambrinos, D., Möller, R., Labhart, T., Pfeifer, R., & Wehner, R. (2000). A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems, Special issue on Biomimetic Robots, 30, 39–64.

    Google Scholar 

  • Liu, Y., & Thrun, S. (2003). Results for outdoor-SLAM using sparse extended information filters. In IEEE international conference on robotics and automation (ICRA).

  • Lu, F., & Milios, E. (1994). Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems, 18, 249–275.

    Article  Google Scholar 

  • Lu, F., & Milios, E. (1997). Globally consistent range scan alignment for environment mapping. Autonomous Robots, 4, 333–349.

    Article  Google Scholar 

  • MacKay, D. (1992). Information-based objective functions for active data selection. Neural Computation, 4, 590–604.

    Article  Google Scholar 

  • Mallot, H. (1999). Spatial cognition: behavioral competences, neural mechanisms, and evolutionary scaling. Kognitionswissenschaft, 8, 40–48.

    Article  Google Scholar 

  • Mardia, K., Kent, J., & Bibby, J. (1982). Multivariate analysis. New York: Academic Press.

    Google Scholar 

  • Menegatti, E., Zoccaratoa, M., Pagelloa, E., & Ishiguroc, H. (2004). Image-based Monte Carlo localisation with omnidirectional images. Robotics and Autonomous Systems, 48, 17–30.

    Article  Google Scholar 

  • Möller, R. (2000). Insect visual homing strategies in a robot with analog processing. Biological Cybernetics, Special issue: Navigation in Biological and Artificial Systems, 83(3), 231–243.

    MATH  Google Scholar 

  • Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., & Wehner, R. (2001). Insect strategies of visual homing in mobile robots. In B. Webb, & T. Consi (Eds.), Biorobotics—methods and applications. Cambridge: AAAI/MIT.

    Google Scholar 

  • Redish, A. (1999). Beyond the cognitive map. Cambridge: MIT.

    Google Scholar 

  • Rizzi, A., Duina, D., Inelli, S., & Cassinis, R. (2001). A novel visual landmark matching for a biologically inspired homing. Pattern Recognition Letters, 22, 1371–1378.

    Article  MATH  Google Scholar 

  • Röfer, T. (1997). Controlling a wheelchair with image-based homing, Technical report, AISB Workshop on spatial reasoning in mobile robots and animals. Tech. rep. UMCS-97-4-1, Dept. Computer Sc., Manchester University.

  • Se, S., Lowe, D., & Little, J. (2005). Vision-based global localization and mapping for mobile robots. IEEE Transactions on Robotics, 21(3), 364–375.

    Article  Google Scholar 

  • Sim, R., & Dudek, G. (1998). Mobile robot localization from learned landmarks. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS’98) (pp. 1060–1065), Victoria, Canada.

  • Stürzl, W. (2004). Sensorik und Bildverarbeitung für Landmarken-basierte Navigation. PhD thesis, Universität Tübingen.

  • Stürzl, W., & Mallot, H. (2002). Vision-based homing with a panoramic stereo sensor. In Lecture notes in computer science (Vol. 2525, pp. 620–628).

  • Sutton, R., & Barto, A. (1998). Reinforcement learning—an introduction. Cambridge: MIT.

    Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT.

    MATH  Google Scholar 

  • Thrun, S., Fox, D., Burgard, W., & Dellaert, F. (2001). Robust Monte Carlo localization for mobile robots. Artificial Intelligence, 128(1–2), 99–141.

    Article  MATH  Google Scholar 

  • Thrun, S., Liu, Y., Koller, D., Ng, A., Ghahramani, Z., & Durrant-Whyte, H. (2004). Simultaneous localization and mapping with sparse extended information filters. International Journal of Robotics Research, 23(7–8), 693–716.

    Google Scholar 

  • Vardy, A., & Möller, R. (2005). Biologically plausible visual homing methods based on optical flow techniques. Connection Science, Special issue: Navigation, 17(1–2), 47–89.

    Google Scholar 

  • Vardy, A., & Oppacher, F. (2003). Low-level visual homing. In W. Banzhaf, T. Christaller, P. Dittrich, J. Kim, & J. Ziegler (Eds.), Advances in artificial life, proceedings of the 7th European conference on artificial life (ECAL) (Vol. 2801, pp. 875–884).

  • Vardy, A., & Oppacher, F. (2004). A scale invariant neural feature detector for visual homing. In G. Palm & S. Wermter (Eds.), Proceedings of the workshop on neurobotics, German conference on artificial intelligence.

  • Weber, K., Venkatesh, S., & Srinivasan, M. (1999). Insect-inspired robotic homing. Adaptive Behavior, 7(1), 65–97.

    Article  Google Scholar 

  • Wehner, R., Michel, B., & Antonsen, P. (1996). Visual navigation in insects: coupling of egocentric and geocentric information. Journal of Experimental Biology, 199, 129–140.

    Google Scholar 

  • West, D. (1996). Introduction to graph theory. New York: Prentice–Hall.

    MATH  Google Scholar 

  • Whaite, P., & Ferrie, F. (1997). Autonomous exploration: driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19, 193–205.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Hübner.

Additional information

This work is part of the GNOSYS (FP6-003835-GNOSYS) project, supported by the European Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübner, W., Mallot, H.A. Metric embedding of view-graphs. Auton Robot 23, 183–196 (2007). https://doi.org/10.1007/s10514-007-9040-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9040-0

Keywords