Skip to main content
Log in

Biologically-inspired robot spatial cognition based on rat neurophysiological studies

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a robot architecture with spatial cognition and navigation capabilities that captures some properties of the rat brain structures involved in learning and memory. This architecture relies on the integration of kinesthetic and visual information derived from artificial landmarks, as well as on Hebbian learning, to build a holistic topological-metric spatial representation during exploration, and employs reinforcement learning by means of an Actor-Critic architecture to enable learning and unlearning of goal locations. From a robotics perspective, this work can be placed in the gap between mapping and map exploitation currently existent in the SLAM literature. The exploitation of the cognitive map allows the robot to recognize places already visited and to find a target from any given departure location, thus enabling goal-directed navigation. From a biological perspective, this study aims at initiating a contribution to experimental neuroscience by providing the system as a tool to test with robots hypotheses concerned with the underlying mechanisms of rats’ spatial cognition. Results from different experiments with a mobile AIBO robot inspired on classical spatial tasks with rats are described, and a comparative analysis is provided in reference to the reversal task devised by O’Keefe in 1983.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arbib, M. A., & Lieblich, I. (1977). Motivational learning of spatial behavior. In J. Metzler (Ed.), Systems neuroscience (pp. 221–239). New York: Academic Press.

    Google Scholar 

  • Arleo, A., Smeraldi, F., & Gerstner, W. (2004). Cognitive navigation based on nonuniform Gabor space sampling, unsupervised growing networks, and reinforcement learning. IEEE Transactions on Neural Networks, 15(3), 639–652.

    Article  Google Scholar 

  • Barrera, A., & Weitzenfeld, A. (2006). Return of the rat: Biologically-inspired robotic exploration and navigation. In Proceedings of the 1st IEEE / RAS-EMBS international conference on biomedical robotics and biomechatronics (BioRob), Pisa, Italy.

  • Barrera, A., & Weitzenfeld, A. (2007). Rat-inspired model of robot target learning and place recognition. In Proceedings of the 15th Mediterranean conference on control and automation (MED), Athens, Greece.

  • Barto, A. G. (1995). Adaptive critics and the basal ganglia. In J. C. Houk, J. L. Davis, & D. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 215–232). Cambridge: MIT Press.

    Google Scholar 

  • Bosse, M., Newman, P., Leonard, J., & Teller, S. (2004). SLAM in large-scale cyclic environments using the Atlas Framework. International Journal on Robotics Research, 23(12), 1113–1139.

    Article  Google Scholar 

  • Burgess, N., Recce, M., & O’Keefe, J. (1994). A model of hippocampal function. Neural Networks, 7(6/7), 1065–1081.

    Article  MATH  Google Scholar 

  • Cho, J., & Sharp, P. (2001). Head direction, place, and movement correlates for cells in the rat retrosplenial cortex. Behavioral Neuroscience, 115(1), 3–25.

    Article  Google Scholar 

  • Collett, T. S., Cartwright, B. A., & Smith, B. A. (1986). Landmark learning and visuo-spatial memories in gerbils. Journal of Comparative Physiology A, 158, 835–851.

    Article  Google Scholar 

  • Cooper, B., & Mizumori, S. (1999). Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport, 10(3), 625–630.

    Article  Google Scholar 

  • Dominey, P. F., & Arbib, M. A. (1992). A cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex, 2, 135–175.

    Article  Google Scholar 

  • Etienne, A., & Jeffery, K. (2004). Path integration in mammals. Hippocampus, 14(2), 180–192.

    Article  Google Scholar 

  • Filliat, D., & Meyer, J.-A. (2002). Global localization and topological map learning for robot navigation. In J. Hallam et al. (Eds.), From animals to animats 7. Proceedings of the seventh international conference on simulation of adaptive behavior (pp. 131–140). Cambridge: MIT Press.

    Google Scholar 

  • Folkesson, J., & Christensen, H. (2004). Graphical SLAM—a self-correcting map. In Proceedings of IEEE international conference on robotics and automation (ICRA), New Orleans, USA.

  • Franz, M. O., Schölkopf, B., Mallot, H. A., & Bülthoff, H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5, 111–125.

    Article  Google Scholar 

  • Frese, U. (2006). A discussion of simultaneous localization and mapping. Autonomous Robots, 20, 25–42.

    Article  Google Scholar 

  • Gaussier, P., Revel, A., Banquet, J. P., & Babeau, V. (2002). From view cells and place cells to cognitive map learning: Processing stages of the hippocampal system. Biological Cybernetics, 86, 15–28.

    Article  MATH  Google Scholar 

  • Gibson, J. J. (1966). The senses considered as perceptual systems. Boston: Houghton Mifflin.

    Google Scholar 

  • Gothard, K. M., Skaggs, W. E., & McNaughton, B. L. (1996). Dynamics of mismatch correction in the hippocampal ensemble code for space: Interaction between path integration and environmental cues. Journal of Neuroscience, 16(24), 8027–8040.

    Google Scholar 

  • Grace, A., Floresco, S., Goto, Y., & Lodge, D. (2007). Regulation of firing dopaminergic neurons and control of goal-directed behaviors. Trends in Neurosciences, 30(5), 220–227.

    Article  Google Scholar 

  • Granon, S., & Poucet, B. (2000). Involvement of the rat prefrontal cortex in cognitive functions: A central role for the prelimbic area. Psychobiology, 28(2), 229–237.

    Google Scholar 

  • Guazzelli, A., Corbacho, F. J., Bota, M., & Arbib, M. A. (1998). Affordances, motivation, and the world graph theory. Adaptive Behavior, 6(3/4), 435–471.

    Article  Google Scholar 

  • Guivant, J., Nebot, E., Nieto, J., & Masson, F. (2004). Navigation and mapping in large unstructured environments. The International Journal of Robotics Research, 23(4), 449–472.

    Article  Google Scholar 

  • Guzowski, J., & Knierim, J., Moser, E. (2004). Ensemble dynamics of hippocampal regions CA3 and CA1. Neuron, 44, 581–584.

    Article  Google Scholar 

  • Hähnel, D., Burgard, W., Wegbreit, B., & Thrun, S. (2003). Towards lazy data association in SLAM. In Proceedings of the 11th international symposium of robotics research (ISRR), Sienna, Italy.

  • Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.

    Google Scholar 

  • Hernández-Rabaza, V., Barcia, J., Llorens-Martín, M., Trejo, J., & Canales, J. (2007). Spared place and object-place learning but limited spatial working memory capacity in rats with selective lesions of the dentate gyrus. Brain Research Bulletin, 72(4–6), 315–323.

    Article  Google Scholar 

  • Hollup, S. A., Kjelstrup, K. G., Hoff, J., Moser, M., & Moser, E. I. (2001a). Impaired recognition of the goal location during spatial navigation in rats with hippocampal lesions. The Journal of Neuroscience, 21(12), 4505–4513.

    Google Scholar 

  • Hollup, S. A., Molden, S., Donnett, J. G., Moser, M., & Moser, E. I. (2001b). Place fields of rat hippocampal pyramidal cells and spatial learning in the watermaze. European Journal of Neuroscience, 13, 1197–1208.

    Article  Google Scholar 

  • Houk, J. C., Adams, J. L., & Barto, A. G. (1995). A model of how the basal ganglia generate and use neural signals that predict reinforcement. In J. C. Houk, J. L. Davis, & D. G. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 249–270). Cambridge: MIT Press.

    Google Scholar 

  • Jeffery, K. J., & O’Keefe, J. M. (1999). Learned interaction of visual and idiothetic cues in the control of place field orientation. Experimental Brain Research, 127, 151–161.

    Article  Google Scholar 

  • Kelley, A. (2004). Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neuroscience and Biobehavioral Reviews, 27(8), 765–776.

    Article  Google Scholar 

  • Kuipers, B., Modayil, J., Beeson, P., MacMahon, M., & Savelli, F. (2004). Local metrical and global topological maps in the Hybrid Spatial Semantic Hierarchy. In Proceedings of IEEE international conference on robotics and automation (ICRA), New Orleans, USA.

  • McNaughton, B., Mizumori, S., Barnes, C., Leonard, B., Marquis, M., & Green, E. (1994). Cortical representation of motion during unrestrained spatial navigation in the rat. Cerebral Cortex, 4, 27–39.

    Article  Google Scholar 

  • Milford, M., Wyeth, G., & Prasser, D. (2006). RatSLAM on the edge: Revealing a coherent representation from an overloaded rat brain. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Beijing, China (pp. 4060–4065).

  • Mittelstaedt, M., & Mittelstaedt, H. (1982). Homing by path integration in a mammal. In F. Papi & H. G. Wallraff (Eds.), Avian navigation (pp. 290–297). Berlin: Springer.

    Google Scholar 

  • Morris, R. G. M. (1981). Spatial localization does not require the presence of local cues. Learning and Motivation, 12, 239–260.

    Article  Google Scholar 

  • Movarec, H. P., & Elfes, A. (1985). High resolution maps from wide angle sonar. In Proceedings of IEEE international conference on robotics and automation (ICRA) (pp. 116–121).

  • O’Keefe, J. (1983). Spatial memory within and without the hippocampal system. In W. Seifert (Ed.), Neurobiology of the hippocampus (pp. 375–403). New York: Academic Press.

    Google Scholar 

  • O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press.

    Google Scholar 

  • Parron, C., & Save, E. (2004). Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Experimental Brain Research, 159(3), 349–359.

    Article  Google Scholar 

  • Poucet, B. (1993). Spatial cognitive maps in animals: New hypotheses on their structure and neural mechanisms. Psychological Review, 100(2), 163–182.

    Article  Google Scholar 

  • Redish, A. (1997). Beyond the cognitive map. Ph.D. thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

  • Redish, A., & Touretzky, D. (1997). Cognitive maps beyond the hippocampus. Hippocampus, 7(1), 15–35.

    Article  Google Scholar 

  • Risold, P., Thompson, R., & Swanson, L. (1997). The structural organization of connections between hypothalamus and cerebral cortex. Brain Research Reviews, 24(2–3), 197–254.

    Article  Google Scholar 

  • Schultz, W., Tremblay, L., & Hollerman, J. (1998). Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 37(4–5), 421–429.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

    Google Scholar 

  • Tolman, E. (1948). Cognitive maps in rats and men. Psychological Review, 55, 189–208.

    Article  Google Scholar 

  • Weitzenfeld, A., Arbib, M., & Alexander, A. (2002). The neural simulation language. Cambridge: MIT Press.

    Google Scholar 

  • Zivkovic, Z., Bakker, B., & Kröse, B. (2005). Hierarchical map building using visual landmarks and geometric constraints. In Proceedings of IEEE/RSJ international conference on intelligent robots and systems (IROS), Edmonton, Canada (pp. 7–12).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra Barrera.

Additional information

This research was partially supported by collaboration projects UC MEXUS CONACYT (ITAM–UCSC), LAFMI CONACYT (ITAM–ISC), NSF CONACYT (ITAM–UCI) under grant #42440 and “Asociación Mexicana de Cultura, S. A.”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barrera, A., Weitzenfeld, A. Biologically-inspired robot spatial cognition based on rat neurophysiological studies. Auton Robot 25, 147–169 (2008). https://doi.org/10.1007/s10514-007-9074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9074-3

Keywords

Navigation