Skip to main content

Advertisement

Log in

Dealing with internal and external perturbations on walking robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Up to now, walking robots have been working outdoors under favorable conditions and using very large stability margins to cope with natural environments and intrinsic robot dynamics that can cause instability in these machines when they use statically-stable gaits. The result has been very slow robots prone to tumble down in the presence of perturbations. This paper proposes a novel gait-adaptation method based on the maximization of the Normalized Dynamic Energy Stability Margin. This method enables walking-machine gaits to adapt to internal (robot dynamics) and external (environmental) perturbations, including the slope of the terrain, by finding the gait parameters that maximize robot stability. The adaptation method is inspired in the natural gait adaptation carried out by humans and animals to balance external forces or the effect of sloping terrain. Experiments with the SILO4 quadruped robot are presented and show how robot stability is more robust when the proposed approach is used for different external forces and sloping terrains. Using the proposed gait-adaptation approach the robot is able to withstand external forces up to 58% the robot weight and 25-degree slopes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bekey, G. A. (2005). Autonomous robots: from biological inspiration to implementation and control. Cambridge: MIT Press.

    Google Scholar 

  • Brooks, C., Iagnemma, K., & Dubowsky, S. (2005). Vibration-based terrain analysis for mobile robots. In Proceedings of the IEEE international conference on robotics and automation. Barcelona, Spain.

  • Chankong, V., & Haimes, Y. V. (1983). Multiobjective decision making-theory and methodology. New York: Elsevier.

    MATH  Google Scholar 

  • Garcia, E., & Gonzalez de Santos, P. (2005). An improved energy stability margin for walking machines subject to dynamic effects. Robotica, 23(1), 13–20.

    Article  Google Scholar 

  • Garcia, E., Estremera, J., & Gonzalez de Santos, P. (2002). A comparative study of stability margins for walking machines. Robotica, 20, 595–606.

    Article  Google Scholar 

  • Giguere, P., Dudek, G., Prahacs, C., & Saunderson, S. (2006). Environment identification for a running robot using inertial and actuator cues. In Proceedings of robotics science and systems. Philadelphia, Pennsylvania.

  • Gonzalez de Santos, P., Garcia, E., Estremera, J., & Armada, M. (2005). DYLEMA: using walking robots for landmine detection and location. International Journal of Systems Science, 36(9), 545–558.

    Article  MATH  Google Scholar 

  • Gonzalez de Santos, P., Garcia, E., & Estremera, J. (2006). Quadrupedal locomotion: an introduction to the control of four-legged robots. London: Springer.

    MATH  Google Scholar 

  • Hardt, M., & Von Stryk, O. (2002). Increasing stability in dynamic gaits using numerical optimization. In Proc. 15th IFAC world congress on automatic control (pp. 1636–1641). Barcelona, Spain.

  • Kang, D., Lee, Y., Lee, S., Hong, Y., & Bien, Z. (1997). A study on an adaptive gait for a quadruped walking robot under external forces. In Proc. IEEE int. conf. robotics and automation (pp. 2777–2782). Albuquerque, New Mexico.

  • Kuo, A. (2002). The relative roles of feedforward and feedback in the control of rhythmic movements. Motor Control, (6), 129–145.

  • Lewis, M., & Bekey, O. (2002). Gait adaptation in a quadruped robot. Autonomous Robots, 12(3), 301–312.

    Article  MATH  Google Scholar 

  • Lin, B., & Song, S. (1993). Dynamic modeling, stability and energy efficiency of a quadrupedal walking machine. In Proc. IEEE int. conf. robotics and automation (pp. 367–373). Atlanta, Georgia.

  • Nichol, J. G., Singh, S., Waldron, K. J., Palmer III, L. R., & Orin, D. E. (2004). System design of a quadrupedal galloping machine. The International Journal of Robotics Research, 23(10–11), 1013–1027.

    Article  Google Scholar 

  • Orin, D. (1976). Interactive control of a six-legged vehicle with optimization of both stability and energy. Ph.D. thesis, The Ohio State University.

  • Papadopoulos, E., & Rey, D. (1996). A new measure of tipover stability margin for mobile manipulators. In Proc. IEEE int. conf. robotics and automation (pp. 3111–3116). Minneapolis, Minnesota.

  • Plushtech (2002). Walking technology: the walking forest machine concept. Plustech Oy, Tampere, Finland. Available: http://www.plustech.fi (2002).

  • Silo4 (2002). The SILO4 walking robot. Industrial Automation Institute, C.S.I.C., Madrid, Spain. Available: http://www.iai.csic.es/users/silo4/.

  • Tsukagoshi, H., & Hirose, S. (1998). Intermittent crawl gait for quadruped walking vehicles on rough terrain. In Int. conf. climbing and walking robots (pp. 323–328). Brussels, Belgium.

  • Weingarten, J., Lopes, G., Buehler, M., Groff, R., & Koditschek, D. (2004). Automated gait adaptation for legged robots. In Proc. IEEE int. conf. robotics and automation (pp. 2153–2158). New Orleans, LA.

  • Wettergreen, D., & Thorpe, C. (1996). Developing planning and reactive control for a hexapod robot. In Proc. IEEE int. conf. robotics and automation. Atlanta, Georgia.

  • Yoneda, K., & Hirose, S. (1997). Three-dimensional stability criterion of integrated locomotion and manipulation. Journal of Robotics and Mechatronics, 9(4), 267–274.

    Google Scholar 

  • Zhang, Z. G., Kimura, H., & Fukukoka, Y. (2006). Autonomously generating efficient running of a quadruped robot using delayed feedback control. Advanced Robotics, 20(6), 607–629.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Garcia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, E., Gonzalez de Santos, P. & Matia, F. Dealing with internal and external perturbations on walking robots. Auton Robot 24, 213–227 (2008). https://doi.org/10.1007/s10514-007-9079-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-007-9079-y

Keywords

Navigation