Skip to main content
Log in

Contact type dependency of texture classification in a whiskered mobile robot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous studies, namely, their use of whisker deflection signals obtained under relatively constrained experimental conditions. Here we consider the classification of signals obtained from a whiskered robot required to explore different surface textures from a range of orientations and distances. This procedure resulted in a variety of deflection signals for any given texture. Using a standard Gaussian classifier we show, using both hand-picked features and ones derived from studies of rat vibrissal processing, that a robust rough-smooth discrimination is achievable without any knowledge of how the whisker interacts with the investigated object. On the other hand, finer discriminations appear to require knowledge of the target’s relative position and/or of the manner in which the whisker contact its surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Andermann, M. L., & Moore, C. I. (2006). A somatotopic map of vibrissa motion direction within a barrel column. Nature Neuroscience, 9(4), 543–551.

    Article  Google Scholar 

  • Arabzadeh, E., Panzeri, S., & Diamond, M. E. (2004). Whisker vibration information carried by rat barrel cortex neurons. The Journal of Neuroscience, 24(26), 6011–6220.

    Article  Google Scholar 

  • Arabzadeh, E., Zorzin, E., & Diamond, M. E. (2005). Neuronal encoding of texture in the whisker sensory pathway. PLoS Biology, 3(1), e17.

    Article  Google Scholar 

  • Berg, R. W., & Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. Journal of Neurophysiology, 89(1), 104–117.

    Article  Google Scholar 

  • Bernardo, J. M., & Smith, A. (2000). Wiley series in probability and statistics. Bayesian theory. New York: Wiley.

    MATH  Google Scholar 

  • Birdwell, J. A., Solomon, J. H., Thajchayapong, M., Taylor, M. A., Cheely, M., Towal, R. B., Conradt, J., & Hartmann, M. J. (2007). Biomechanical models for radial distance determination by the rat vibrissal system. Journal of Neurophysiology, 98(4), 2439–2455.

    Article  Google Scholar 

  • Bishop, C. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.

    Google Scholar 

  • Brecht, M. (2007). Barrel cortex and whisker-mediated behaviors. Current Opinion in Neurobiology, 17(4), 408–416.

    Article  Google Scholar 

  • Brecht, M., Preilowski, B., & Merzenich, M. M. (1997). Functional architecture of the mystacial vibrissae. Behavioural Brain Research, 84(1–2), 81–97.

    Article  Google Scholar 

  • Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10(8), 2638–2648.

    Google Scholar 

  • Downie, J. S., West, K., Ehmann, A., & Vincent, E. (2005). The 2005 music information retrieval evaluation exchange. In Proceedings of the 6th international symposium on music information retrieval (pp. 320–323).

  • Fend, M. (2005). Whisker-based texture discrimination on a mobile robot. In Lecture notes in computer science. Proceedings of the 8th European conference on artificial life (ECAL). Berlin: Springer.

    Google Scholar 

  • Fend, M., Bovet, S., Yokoi, H., & Pfeifer, R. (2003). An active artificial whisker array for texture discrimination. In EEE/RSJ conference on intelligent robots and systems (IROS), Las Vegas.

  • Fundin, B. T., Rice, F. L., Pfaller, K., & Arvidsson, J. (1994). The innervation of the mystacial pad in the adult-rat studied by anterograde transport of HRP conjugates. Experimental Brain Research, 99(2), 233–246.

    Article  Google Scholar 

  • Hartmann, M. J. (2001). Active sensing capabilities of the rat whisker system. Autonomous Robots, 11, 249–254.

    Article  MATH  Google Scholar 

  • Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M. E., & Konig, P. (2006). Texture signals in whisker vibrations. Journal of Neurophysiology, 95(3), 1792–1799.

    Article  Google Scholar 

  • Kaneko, M. (1998). Active antenna for contact sensing. IEEE Transactions on Robotics and Automation, 14(2), 278–291.

    Article  Google Scholar 

  • Kim, D., & Möller, R. (2004). A biomimetic whisker for texture discrimination and distance estimation. In S. Schaal (Ed.), From animals to animats: proceedings of the 8th international conference on the simulation of adaptive behavior (Vol. 8, pp. 140–149). Cambridge: MIT Press.

    Google Scholar 

  • Kim, D., & Möller, R. (2007). Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems, 55(3), 229–243.

    Article  MATH  Google Scholar 

  • Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444.

    Article  Google Scholar 

  • Lungarella, M., Haffner, V., Pfeifer, R., & Yokoi, H. (2002). An artificial whisker sensor for robotics. In 15th conference on intelligent robots and systems (pp. 2931–2936).

  • Mitchinson, B., Gurney, K. N., Redgrave, P., Melhuish, C., Pipe, A. G., Pearson, M., Gilhespy, I., & Prescott, T. J. (2004). Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society B: Biological Sciences, 271, 2509–2516.

    Article  Google Scholar 

  • Mitchinson, B., Pearson, M., Melhuish, C., & Prescott, T. J. (2006). A model of sensorimotor coordination in the rat whisker system. In Lecture notes in artificial intelligence : Vol. 4095. From animals to animats 9: proceedings of the ninth international conference on simulation of adaptive behaviour. Berlin: Springer.

    Google Scholar 

  • Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274, 1035–1041.

    Article  Google Scholar 

  • Mitchinson, B., Arabzadeh, E., Diamond, M. E., & Prescott, T. J. (2008). Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat. Biological Cybernetics.

  • Pearson, M. J., Gilhespy, I., Melhuish, C., Mitchinson, B., Nibouche, M., Pipe, A. G., & Prescott, T. J. (2005). A biomimetic haptic sensor. International Journal of Advanced Robotic Systems, 2(4), 335–343.

    Google Scholar 

  • Pearson, M. J., Pipe, A. G., Melhuish, C., Mitchinson, B., & Prescott, T. J. (2007). Whiskerbot: a robotic active touch system modelled on the rat whisker sensory system. Adaptive Behavior, 15(3), 223–240.

    Article  Google Scholar 

  • Ritt, J., Andermann, M., Skowronski-Lutz, E., & Moore, C. (2006). Characterization of vibrissa motion during volitional active touch. In Barrels XIX, Atlanta, USA.

  • Russell, R. A. (1984). Closing the sensor-computer-robot control loop. Robotics Age, 6(4), 15–20.

    Google Scholar 

  • Russell, R. A. (1992) Using tactile whiskers to measure surface contours. In Proceedings of the 1992 IEEE international conference on robotics and automation (pp. 1295–1299).

  • Schultz, A. E., Solomon, J. H., Peshkin, M. A., & Hartmann, M. J. (2005). Multifunctional whisker arrays for distance detection, terrain mapping, and object feature extraction. In Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005 (pp. 2588–2593).

  • Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104(15), 6424–6429.

    Article  Google Scholar 

  • Seth, A., McKinstry, J., Edelman, G., & Krichmar, J. (2004). Texture discrimination by an autonomous mobile brain-based device with whiskers. Proceedings of the international IEEE conference on robotics and automation, 5, 4925–4930.

    Google Scholar 

  • Solomon, J. H., & Hartmann, M. J. (2006). Biomechanics: robotic whiskers used to sense features. Nature, 443(7111), 525.

    Article  Google Scholar 

  • Wilson, J. F., & Chen, A. (1995). A whisker probe system for shape perception of solids. ASME Journal of Dynamic Systems, Measurement and Control, 117, 104–108.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Fox.

Electronic Supplementary Material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Below is the link to the electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, C.W., Mitchinson, B., Pearson, M.J. et al. Contact type dependency of texture classification in a whiskered mobile robot. Auton Robot 26, 223–239 (2009). https://doi.org/10.1007/s10514-009-9109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-009-9109-z

Keywords

Navigation