Abstract
Actuated artificial whiskers modeled on rat macrovibrissae can provide effective tactile sensor systems for autonomous robots. This article focuses on texture classification using artificial whiskers and addresses a limitation of previous studies, namely, their use of whisker deflection signals obtained under relatively constrained experimental conditions. Here we consider the classification of signals obtained from a whiskered robot required to explore different surface textures from a range of orientations and distances. This procedure resulted in a variety of deflection signals for any given texture. Using a standard Gaussian classifier we show, using both hand-picked features and ones derived from studies of rat vibrissal processing, that a robust rough-smooth discrimination is achievable without any knowledge of how the whisker interacts with the investigated object. On the other hand, finer discriminations appear to require knowledge of the target’s relative position and/or of the manner in which the whisker contact its surface.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andermann, M. L., & Moore, C. I. (2006). A somatotopic map of vibrissa motion direction within a barrel column. Nature Neuroscience, 9(4), 543–551.
Arabzadeh, E., Panzeri, S., & Diamond, M. E. (2004). Whisker vibration information carried by rat barrel cortex neurons. The Journal of Neuroscience, 24(26), 6011–6220.
Arabzadeh, E., Zorzin, E., & Diamond, M. E. (2005). Neuronal encoding of texture in the whisker sensory pathway. PLoS Biology, 3(1), e17.
Berg, R. W., & Kleinfeld, D. (2003). Rhythmic whisking by rat: retraction as well as protraction of the vibrissae is under active muscular control. Journal of Neurophysiology, 89(1), 104–117.
Bernardo, J. M., & Smith, A. (2000). Wiley series in probability and statistics. Bayesian theory. New York: Wiley.
Birdwell, J. A., Solomon, J. H., Thajchayapong, M., Taylor, M. A., Cheely, M., Towal, R. B., Conradt, J., & Hartmann, M. J. (2007). Biomechanical models for radial distance determination by the rat vibrissal system. Journal of Neurophysiology, 98(4), 2439–2455.
Bishop, C. (1995). Neural networks for pattern recognition. Oxford: Oxford University Press.
Brecht, M. (2007). Barrel cortex and whisker-mediated behaviors. Current Opinion in Neurobiology, 17(4), 408–416.
Brecht, M., Preilowski, B., & Merzenich, M. M. (1997). Functional architecture of the mystacial vibrissae. Behavioural Brain Research, 84(1–2), 81–97.
Carvell, G. E., & Simons, D. J. (1990). Biometric analyses of vibrissal tactile discrimination in the rat. Journal of Neuroscience, 10(8), 2638–2648.
Downie, J. S., West, K., Ehmann, A., & Vincent, E. (2005). The 2005 music information retrieval evaluation exchange. In Proceedings of the 6th international symposium on music information retrieval (pp. 320–323).
Fend, M. (2005). Whisker-based texture discrimination on a mobile robot. In Lecture notes in computer science. Proceedings of the 8th European conference on artificial life (ECAL). Berlin: Springer.
Fend, M., Bovet, S., Yokoi, H., & Pfeifer, R. (2003). An active artificial whisker array for texture discrimination. In EEE/RSJ conference on intelligent robots and systems (IROS), Las Vegas.
Fundin, B. T., Rice, F. L., Pfaller, K., & Arvidsson, J. (1994). The innervation of the mystacial pad in the adult-rat studied by anterograde transport of HRP conjugates. Experimental Brain Research, 99(2), 233–246.
Hartmann, M. J. (2001). Active sensing capabilities of the rat whisker system. Autonomous Robots, 11, 249–254.
Hipp, J., Arabzadeh, E., Zorzin, E., Conradt, J., Kayser, C., Diamond, M. E., & Konig, P. (2006). Texture signals in whisker vibrations. Journal of Neurophysiology, 95(3), 1792–1799.
Kaneko, M. (1998). Active antenna for contact sensing. IEEE Transactions on Robotics and Automation, 14(2), 278–291.
Kim, D., & Möller, R. (2004). A biomimetic whisker for texture discrimination and distance estimation. In S. Schaal (Ed.), From animals to animats: proceedings of the 8th international conference on the simulation of adaptive behavior (Vol. 8, pp. 140–149). Cambridge: MIT Press.
Kim, D., & Möller, R. (2007). Biomimetic whiskers for shape recognition. Robotics and Autonomous Systems, 55(3), 229–243.
Kleinfeld, D., Ahissar, E., & Diamond, M. E. (2006). Active sensation: insights from the rodent vibrissa sensorimotor system. Current Opinion in Neurobiology, 16(4), 435–444.
Lungarella, M., Haffner, V., Pfeifer, R., & Yokoi, H. (2002). An artificial whisker sensor for robotics. In 15th conference on intelligent robots and systems (pp. 2931–2936).
Mitchinson, B., Gurney, K. N., Redgrave, P., Melhuish, C., Pipe, A. G., Pearson, M., Gilhespy, I., & Prescott, T. J. (2004). Empirically inspired simulated electro-mechanical model of the rat mystacial follicle-sinus complex. Proceedings of the Royal Society B: Biological Sciences, 271, 2509–2516.
Mitchinson, B., Pearson, M., Melhuish, C., & Prescott, T. J. (2006). A model of sensorimotor coordination in the rat whisker system. In Lecture notes in artificial intelligence : Vol. 4095. From animals to animats 9: proceedings of the ninth international conference on simulation of adaptive behaviour. Berlin: Springer.
Mitchinson, B., Martin, C. J., Grant, R. A., & Prescott, T. J. (2007). Feedback control in active sensing: rat exploratory whisking is modulated by environmental contact. Proceedings of the Royal Society B: Biological Sciences, 274, 1035–1041.
Mitchinson, B., Arabzadeh, E., Diamond, M. E., & Prescott, T. J. (2008). Spike-timing in primary sensory neurons: a model of somatosensory transduction in the rat. Biological Cybernetics.
Pearson, M. J., Gilhespy, I., Melhuish, C., Mitchinson, B., Nibouche, M., Pipe, A. G., & Prescott, T. J. (2005). A biomimetic haptic sensor. International Journal of Advanced Robotic Systems, 2(4), 335–343.
Pearson, M. J., Pipe, A. G., Melhuish, C., Mitchinson, B., & Prescott, T. J. (2007). Whiskerbot: a robotic active touch system modelled on the rat whisker sensory system. Adaptive Behavior, 15(3), 223–240.
Ritt, J., Andermann, M., Skowronski-Lutz, E., & Moore, C. (2006). Characterization of vibrissa motion during volitional active touch. In Barrels XIX, Atlanta, USA.
Russell, R. A. (1984). Closing the sensor-computer-robot control loop. Robotics Age, 6(4), 15–20.
Russell, R. A. (1992) Using tactile whiskers to measure surface contours. In Proceedings of the 1992 IEEE international conference on robotics and automation (pp. 1295–1299).
Schultz, A. E., Solomon, J. H., Peshkin, M. A., & Hartmann, M. J. (2005). Multifunctional whisker arrays for distance detection, terrain mapping, and object feature extraction. In Proceedings of the 2005 IEEE international conference on robotics and automation, ICRA 2005 (pp. 2588–2593).
Serre, T., Oliva, A., & Poggio, T. (2007). A feedforward architecture accounts for rapid categorization. Proceedings of the National Academy of Sciences, 104(15), 6424–6429.
Seth, A., McKinstry, J., Edelman, G., & Krichmar, J. (2004). Texture discrimination by an autonomous mobile brain-based device with whiskers. Proceedings of the international IEEE conference on robotics and automation, 5, 4925–4930.
Solomon, J. H., & Hartmann, M. J. (2006). Biomechanics: robotic whiskers used to sense features. Nature, 443(7111), 525.
Wilson, J. F., & Chen, A. (1995). A whisker probe system for shape perception of solids. ASME Journal of Dynamic Systems, Measurement and Control, 117, 104–108.
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material
Below is the link to the electronic supplementary material
Below is the link to the electronic supplementary material
Below is the link to the electronic supplementary material
Rights and permissions
About this article
Cite this article
Fox, C.W., Mitchinson, B., Pearson, M.J. et al. Contact type dependency of texture classification in a whiskered mobile robot. Auton Robot 26, 223–239 (2009). https://doi.org/10.1007/s10514-009-9109-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-009-9109-z