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Abstract Actuated artificial whiskers modeled on rat
macrovibrissae can provide effective tactile sensor sys-

tems for autonomous robots. This article focuses on

texture classification using artificial whiskers and ad-

dresses a limitation of previous studies, namely, their
use of whisker deflection signals obtained under rel-

atively constrained experimental conditions. Here we

consider the classification of signals obtained from a

whiskered robot required to explore different surface

textures from a range of orientations and distances.
This procedure resulted in a variety of deflection sig-

nals for any given texture. Using a standard Gaussian

classifier we show, using both hand-picked features and

ones derived from studies of rat vibrissal processing,
that a robust rough-smooth discrimination is achiev-

able without any knowledge of how the whisker inter-

acts with the investigated object. On the other hand,

finer discriminations appear to require knowledge of the

target’s relative position and/or of the manner in which
the whisker contact its surface. (146 words)
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1 Introduction

The long facial whiskers (macrovibrissae) of rodents

such as rats and mice provide these animals with a

sophisticated and multi-functional tactile sensory ap-

paratus [21], [8]. Using their vibrissae, rats are able to

make fine-grained discriminations based on surface tex-
ture with a resolution similar to that achieved by the

human fingertips [10]. The exploration of texture by the

vibrissae is an active process which involves sweeping

(‘whisking’) the whiskers across the target surface at
a rate of 5-15Hz during typical exploratory behaviour

[4]. The brushing of each vibrissa against the target

surface induces vibrations in the whisker shaft that are

transduced into neural signals by mechanoreceptors in

the whisker follicle [23]. The neural encodings of these
vibration patterns, formed across the vibrissal array,

therefore provide the basis for the texture discrimina-

tion capabilities shown by the rat [1], [16]. High-speed

videographic observations suggest that contact on only
a small number of macrovibrissae over 3-5 whisking cy-

cles is sufficient for reliable texture discrimination [10].

Tactile-based texture discrimination capabilities, sim-

ilar to those of rodent vibrissae, would be useful in a
variety of robot applications. For example, intelligent

household appliances could use whisker-based sensing

to optimise cleaning strategies to suit different surface

types. Similarly, autonomous vehicles such as planetary

rovers could use them to assess surface properties such
as friction in order to better control locomotion and ex-

ploration [33]. Whisker sensors will be especially useful

for robot local navigation and object recognition in any

circumstances were the capacity to use vision sensors,
or active sensors such as lasers or infra-red, is compro-

mised by poor air quality (smoke- or dust-filled), or by

turbid water. Such circumstances are often encountered
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during search and rescue missions, in environments that

are hazardous to humans, making the capacity to em-

ploy autonomous robots alongside human search teams

particularly useful.

Research into robotic whisker systems began in the
mid 1980s, and has continued since as a small but flour-

ishing sub-field of bio-inspired engineering. The inves-

tigated solutions have differed considerably in a num-

ber of important respects. First, choice of material for
the vibrissal shaft has ranged from steel wires [31], [18]

through actual rat vibrissae [22], to specially-moulded

composites [28]. Sensor transduction has likewise used a

variety of solutions. Early robotic whisker implementa-

tions used potentiometers to measure the torque of steel
whiskers as they made contact with surfaces [18]; [32].

More recent work has used electret microphones [22],

resistive arrays [35], strain gauges [28], [36], piezoelec-

tric [19], and magnetic (‘Hall effect’) sensors [19]; [20].
A number of systems have employed actuated whiskers

in order to better simulate the active sensing capacities

of the rat vibrissae. Solutions to the actuation prob-

lem have included miniaturised conventional electric

motors, and actuators with more muscle-like properties
such as shape-memory alloys [28] or ‘air-muscles’ [37].

In functional terms, previous work on robotic whisker

sensing has provided proof of principle that artificial

vibrissal systems can compute estimates of distance and
shape [37], [36], [32], [20] and can distinguish between

textures with different spatial frequencies [12], [19]. In

the following we briefly summarise past research specif-

ically related to the texture discrimination problem.

Lungarella et al. [22] investigated texture discrim-
ination by gluing either rat whiskers, or similar-sized

synthetic whiskers, to the diaphragm of an electret mi-

crophone thereby transducing vibration of the whisker

shaft into acoustic signals. In one set of experiments

[13] actuated whiskers, attached to a stationary robot
‘head’, were made to brush against a rotating textured

drum. Data was analyzed as time-averaged windowed-

spectra and discrimination performed by clustering vec-

torised spectra. When the contact period between the
whisker shaft and the drum surface was known the sys-

tem was able to discriminate eight distinct textures us-

ing eight whiskers with exposure to ten whisk cycles per

texture (80 individual contacts); with unknown contact

periods this discrimination capacity fell to five textures
for the same number of whisks. In a second series of

experiments [12] a 3-layer sigmoidal regression neural

network was used for classification having 10 input bins

for each of 6 whiskers, 10 hidden nodes, and 4 output
classes. Using a controlled set of seven known head po-

sitions the system achieved 70% accuracy in classifying

four textures using data from six whiskers each making

a single whisk (i.e. six individual contacts). No signif-

icant gain was obtained by increasing the number of

hidden nodes. In a further experiment where the robot

platform was made mobile (i.e. uncontrolled head posi-

tions), classification was described as “not entirely re-
liable” and no quantitative results were given.

Kim and Möller [19] performed similar experiments

using a non-actuated, 26mm steel whisker attached to a

fixed base contacting a rotating, textured drum. Direct
measurements of direction and amplitude of deflection

of the whisker shaft were made with magnetic and piezo

sensors. Deliberately choosing textures whose spectra

did not interfere with the theoretical resonant whisker

frequencies, a neural network was again used to classify
the low-band spectra achieving a success rate of 85%

accurate classification over seven textures. These au-

thors noted that classification was better with shorter

whiskers and that the classifier fails when the whisker
base was allowed to move.

Schultz et al. [33] described a robot with 190mm

whiskers whose movement was detected using strain

sensors, and presented spectra for five surfaces of three

types, that can be distinguished by eye. No quantitative
analysis of the data were provided.

The Darwin IX robot, described by Seth et al. [35],

used 40mm polyamide whiskers that, unlike natural

vibrissae, can directly detect the amount of bending

along the whole whisker, not just at the base. Unlike
the other robots above, data was analyzed in the time

domain, with 20 lagged curvature inputs fed into a bi-

ologically inspired neural network classifier. The robot

was given the task of distinguishing between two tex-
tures consisting of patterns of pegs embedded in walls.

In a mobile robot setting, two-way classification reached

97% accuracy, though it is unclear how many whisk cy-

cles were typically used to make each decision.

The above systems have applied both generative
methods, such as solving the beam equations to ana-

lytically remove whisker resonant frequencies [19], and

data-mining methods, such as neural network training

algorithms [19], [12], [22] to address the texture clas-
sification problem. An alternative approach – to be

taken here – is to search for useful statistics of the

data or ‘features’ that can then be provided as inputs

to standard classifiers. Such features may be identi-

fied by careful analysis of the data, by hand or us-
ing machine methods where appropriate. This type of

hypothesize-and-test method of feature discovery has

produced contest-winning results in other time-series

classification domains such as music retrieval [11]. A
particular method for feature hypothesis generation is

to examine the codes and processing mechanisms used

by biological classification systems. In the domain of
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Fig. 1: WhiskerBot, whisking on a surface during the experiments.

vision, for instance, a classifier modeled on the primate

visual cortex has recently out-performed several bench-

mark computer vision systems on a large database of
natural images [34]. Here we will take inspiration from

studies of coding in the neural pathways of the rat

whisker system as one source of candidate features for

resolving texture classifications problems for artificial

vibrissae. One previous study [17] has taken a similar
approach in which frequency-based features inspired by

the analysis of activity in whisker (“barrel”) sensory

cortex were used to successfully classify signals obtained

from an actuated 80mm metal whisker moved against
textured surfaces from a known fixed starting position.

The features identified by [17], along with others in-

spired by our own investigations of coding in the vib-

rissal primary afferent neurons [23], will be evaluated

below for their usefulness in discriminating texture in a
robotic whisker context. The performance of the above

methods will also be compared with a neural network

classifier.

In summary, in previous work, only [12] and [35]

have attempted texture classification using artificial whisker

signals obtained from unconstrained whisker-base po-

sitions and neither reported quantitative results under
these circumstances. This raises the question of how ro-

bust whisker-based texture classifiers are to differences

in the way in which the artificial whisker interacts with

the target surface. This, in turn, is dependent on the
relative position and orientation of the whisker with re-

spect to the surface and on the nature of the whisker

actuation strategy used. In the current study we there-

fore investigated the problem of classification of signals

from different surface textures obtained using robot-
mounted actuated whiskers in four different experimen-

tal settings. In the first two settings, the robot (and

hence the whisker base), was stationary at one of two

fixed distances from the target surface. In the third, the
position of the robot with respect to the target surface

was variable, as the consequence of the robot’s prior

movement from a fixed starting point. Finally, in the

Fig. 2: WhiskerBot’s actuation mechanism, in its resting (A) and
heated (B) states. The BioWire contracts when heated, rotating
the whisker.

fourth setting, data was obtained from 500 arbitrary

positions of the robot relative to the surface.

2 Methods

2.1 Artificial whisker system

As part of a more general investigation of functional

capabilities of artificial whisker systems we previously

constructed an active whisker array attached to a mo-

bile robot platform [28,29], see figure 1. In this system
each artificial whisker was a 200mm moulded glass-fibre

composite rod approximately four times larger than,

but respecting the general form of, a rat whisker, and

gauged at the base to measure strain (bending) in two
dimensions. The whisker was 200mm in length, tapered

from 2mm in diameter at its base to approximately

0.7mm diameter at its tip, and the radius of curvature

was 250mm.

Each whisker was actuated in a single axis (anterior-

posterior) using a shape metal alloy wire (BioMetal)

and a spring, shown in figure 2. Heating the BioMetal
wire, using a pulse width modulated current source,

caused a longitudinal contraction of the BioMetal which

was translated into a rotational force around the drive

shaft onto which the whisker was mounted, thereby ac-

tively protracting the whisker. When the current through
the BioMetal was switched off, the wire would cool and

return to its original length assisted by the spring to

generate a passive retraction phase.

The drive signals to the BioMetal actuators were di-

rectly derived from a pair of coupled motor pattern gen-
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erators, implemented as a spiking neural network, nom-

inally operating as an open-loop controller. Inhibitory

and excitatory projections from the strain sensors at

the base of each whisker would modulate the behaviour

of the pattern generators when contacts were made
with the environment, thus affecting the drive signals

to the BioMetal wires. This feedback control system

was adopted as it best fits both anatomical (no propri-

oception in mystacial musculature [14]) and ethological
observations (contact mediated adaptation [24]) of rats.

For further details of the robot whisker morphology, ac-

tuation, and transductions mechanisms see [26], [29].

For the experiments described below a single whisker

moved (whisked) at about 1Hz, and strains were sam-

pled at 10kHz. Note that our use of strain data as in-
put to a whisker-based texture classification system dif-

fers from previous work which has generally used direct

recordings of angles and deflection amounts as classifier

input.

2.2 Data collection

Four distinct data-sets were obtained each containing

multiple trials of whisking against different textured

surfaces, the difference between sets being the robot’s

experimental setting, that is, the position and move-
ment of the robot platform relative to the investigated

surface. These datasets were:

i. Fixed Brushing (FB): Here the robot platform

and surface are fixed in the same positions over all tri-

als, allowing the whisker to gently brush past the sur-

face for about half of the whisk cycle.

ii. Fixed Dabbing (FD): Again the platform and
surface are fixed in the same positions over all trials, but

placed closer together than above, so the whisker cov-

ers only around 5-10mm of surface before getting stuck

for the rest of the contact period. Feedback control, as
described above, was switched on for fixed dabbing.

iii. Mobile Brushing (MB): The robot begins each
trial away from the surface, then travels towards it

before stopping and performing brushing. The initial

robot positions are roughly similar across trials: start-

ing about 1m from the surface, with a standard devia-
tion radius of about 10mm and standard deviation ori-

entation of about 10 degrees. The robot stops moving

as soon as a surface is found, then brushing behavior is

achieved by controlling whisker actuation using sensory

feedback as described above.

iv. Random positions: Whisks were performed at
random relative positions and orientations, as chosen by

a human instructed to position the surface by hand at as

wide a range of locations as possible relative to a fixed

Fig. 3: Close-up of the whisker tip (and its shadow) during a
typical brushing contact on the rough surface, showing the angle
of contact. For brushing, the distance from robot base to surface

is set to allow the whisker to sweep over the surface, making
contact without sticking; for dabbing, the distance is reduced so
that the whisker is pressed into a point on the surface.

whisker base. This data thus includes both brushing

and dabbing type contacts, with azimuth, elevation and
radius drawn from an approximately flat distribution

within the potential contact area of the whisker.

For each of (i-iii), whisks were performed against

four different types of textured surface of increasing

roughness: a smooth perspex sheet, fine-grade P600 sand-
paper, medium-grade P240 sandpaper, and a rough per-

spex sheet with regular 2mm-spaced grooves. Note that

sandpaper grit is non-regular, having some average num-

ber of bumps per centimeter, but not at a fixed spatial
frequency. 65 whisks were obtained for each FB surface

type; 52 for each FD surface type, and 34 for each MB

surface type. These whisks were split into equal sized

training and test sets. Contact was made by the whisker

tip or within 30mm of the tip, and a typical contact is
shown in fig. 3. The whisker was in contact with the

surface for around 20mm of travel during brushing, and

did not travel during dabbing. Heuristics were used to

remove bad data which included the whisker becoming
stuck on the surfaces and failing to make contact (both

especially prevalent in the mobile setting). For (iv), 500

whisks each were performed against the smooth and

rough perspex surfaces only.

Electronic appendix 1 shows video examples of the
interaction between the whisker and smooth, P240 and

rough surfaces, for settings FB, FD and MB respec-

tively.



5

2.3 Feature extraction

Fig. 4 show examples of typical strain time-series data

collected during the experiment in settings (i-iii). At

least within each dataset, it appears possible to distin-

guish between data acquired from rough and smooth

surfaces by eye. It is also possible to play the whisks
as audio files and identify some differences by ear. In-

tuitively one might think of the whisker as like the

needle in a record player, picking up the audio de-

tails from the record groove, however this analogy is
far from perfect—in all but highly constrained situa-

tions, whiskers exhibit ‘sticks, slips, skips and rings’

[30] rather than smoothly brushing over the surface.

For instance, both natural and artificial vibrissae often

get stuck on rougher textures, then slip quickly off the
sticking point and resonate (ring) at their natural har-

monic frequency. Skips are like stick-slip combinations

but where the whisker is not completely stopped.

We will present three pairs of simple features in ad-
dition to a replication of the neural network classifier

used by [12]. The first pair of features is inspired by

inspection of sampled whisker signals. The other two

pairs are inspired by previous neurophysiological [2] and

modeling [17], [23] investigations of the rat vibrissal sys-
tem. In each case we present raw scatter plots of the

data classes under the features, and confusion matrices

obtained using a standard Gaussian classifier [7]. The

scatter plots show all recorded data; the confusion ma-
trices are constructed by splitting the data into equally

sized (for each class) training and test sets, and report-

ing test performance. The Gaussian classifier operates

by assuming that for each class c , data points xi in fea-

ture space are generated by a Gaussian with unknown
mean µc and covariance Σc,

p(x|µc, Σc) =
1

Z
exp

(

−
1

2
(x − µ)T Σ−1(x − µ)

)

(1)

Z = (2π)
N

2 |Σ|−
1

2 (2)

and for each class finds maximum likelihood parameters

µc, Σc = argmax
µcΣc

∏

i

P (xi|µc, Σc) (3)

for the training data in that class. On test data xj ,

it assigns the maximum likelihood (‘winner-take-all’)

class

cj = argmax
c

∏

j

p(xj |µc, Σc). (4)

3 Results

3.1 Neural network replication

We first give results for a standard neural network clas-
sifier as used in previous studies. Following the method-

ology of [12], the strain time-series from a portion of

the contact period was Discrete Fourier Transformed

(DFT), convolved with a 70 point Blackman window,
and quantized into 10 bins. Unlike Fend et al., our data

does not contain information about the start and end of

the contact periods, and contact periods are highly vari-

able in the mobile setting especially. Therefore we made

use of the onset detector described below to estimate
the start point, and took a conservative 1024 points of

time series following it for the analysis. As in Fend et

al., a three-layer multilayer perceptron was used, hav-

ing between 10 and 14 hidden nodes. We used neurons
with the transfer function y = 2/(1 + exp(−2x)) − 1

for hidden and output layers with one output node

per class, and target values of ±1. Classification was

by winner-take-all and training used the Levenberg-

Marquardt numerical optimisation algorithm [7]. (Win-
dow size, transfer function and output representation

were not detailed by Fend et al., therefore we chose the

best-performing values found by trial and error.) The

training regime of Fend et al. was replicated: the net-
work was trained ten times from random initial weights

and on random test and training partitions of the data,

and the best test set performance is reported.

The confusion matrices in Table 1 give results for the

individual settings (FB=Fixed Brushing; FD=Fixed Dab-
bing; MB=Mobile Brushing) and for a single network

trained on all three (ALL) settings together. The con-

fusion matrix rows represent the true classes and the

columns the predicted classes (hence perfect classifica-
tion would correspond to zeros in all table elements ex-

cept the diagonals) Assuming a reference Beta prior [5]

on the probability of correct classification, the posterior

expectation and standard deviation (a confidence mea-

sure) of this probability are presented as percentages in
the accompanying text.

We note that the neural network method gives good

classification performance within each setting – includ-

ing the mobile brushing case – but does not generalize
particularly well across the settings.

3.2 Onset and Offset features

On listening to whisks from the dabbing experiment
by playing them as sound waves it was apparent that

whisks of rough surfaces featured pronounced clicks dur-

ing the onset and offset of contact.
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Fig. 4: Examples of whisker base strain time series data in various settings and on various textures. Two examples are shown for each
texture-setting combination to illustrate variability. The horizontal axis measures time in samples (1 sample=0.1ms) and the vertical
axis measures strain sensor output. The two short horizontal lines indicate the onset and offset regions, defined in section 3.2.

Further analysis (see fig. 5) showed that the onset

click corresponds well to increased energy in the 2-3kHz

band, in a 128 sample (12.8ms), normalized onset pe-

riod. The start of the onset may be defined heuristi-

cally as the first point at which the signal’s 50-sample
short-term standard deviation is more than ten stan-

dard deviations away from its long-term average since

the start of the whisk. Formally, for strain signal x[t],

and sample variance function V ar, we define the onset
time ton by

σ2[t] = V ar(x[t − 127 : t]) (5)

γ2[t] = V ar(σ[0 : 1000]) (6)

ton = min{t.σ[t] > 10 ∗ γ[t]} (7)

and the value of the onset feature by

Xt[ω] = FFT (
x[t − 127 : t] − 〈x[t − 127 : t]〉

V ar(x[t − 127 : t])
) (8)

onset =

35
∑

ω=25

Xton[ω] (9)

Given this distinctive response to rough surfaces,

this feature would appear to be useful for general rough/smooth
discrimination. It is conceivable that the precise power

distribution within this band may lead to classifiers for

different surface texture frequencies such as P240 and

P600 sandpaper, however we have not found such a clas-
sifier and there is much discouraging within-class vari-

ation. On the other hand, an advantage of classifying

from onset data only is that is invariant to the rest of

the whisk, which may vary by setting.

Energy increase in the offset as shown in fig. 6 did

not appear to be limited to a particular band, but was
well captured simply by the variance of the time domain

signal in the 10ms period after the offset start (toff , de-

fined as the time of maximum counter-whisk-direction

strain following the onset):

toff = argmin t{x[t].t > ton} (10)
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Table 1: Confusion matrices for neural network classifier. Means
and standard deviations of the posterior percentage correct clas-
sification are: FB = 86 ± 3%, FD = 77 ± 5%, MB = 85 ±
5%, ALL = 65 ± 3%.

FB smooth rough p600 p240

smooth 23 0 1 1
rough 0 23 1 1
p600 1 0 20 4
p240 0 0 4 20

FD smooth rough p600 p240

smooth 15 1 3 1
rough 1 15 4 0
p600 0 2 18 0
p240 1 3 2 14

MB smooth rough p600 p240

smooth 9 1 0 0
rough 1 7 0 2
p600 0 0 10 1
p240 0 0 1 10

ALL smooth rough p600 p240

smooth 49 3 1 2
rough 5 31 14 5
p600 4 7 25 20
p240 2 1 13 39
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Fig. 5: FFT magnitudes for the onset region showing rough and
smooth spectra for typical 128-point contact windows in the FB
setting. The Nyquist frequency is 5kHz; the rough surfaces have
increased power (a visible peak) around 2-3kHz which is absent
from the smooth surfaces.

offset = V ar(x[toff : toff + 200]) (11)

This feature is therefore useful to discriminate be-
tween coarser surfaces such as the rough perspex and

the P240 sandpaper. The offset feature may be due to

the whisker sticking at the final bump of the surface –

where one exists – then slipping and ringing as a result.
Particularly on our rough surface, the whisker may no-

ticeably stick in a groove and require a buildup of force

to escape.
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Fig. 6: Closeups of the time-domain signal at the offset (‘release’)
stage of the whisk, for whisks against typical grooved perspex
(above) and P240 sandpaper (below) in the FB setting. It can be
seen that the rougher surface has much higher variance.

Table 2: Confusion matrices for the onset-offset (OO) classifier.
Means and standard deviations of the posterior percentage cor-
rect classification are: FB = 87 ± 3%, FD = 67 ± 6%MB =
52± 8%.

FB smooth rough p600 p240

smooth 28 0 1 3
rough 0 32 1 0
p600 1 0 26 5
p240 3 0 4 26

FD smooth rough p600 p240

smooth 19 0 2 5
rough 1 25 0 0
p600 3 1 17 5
p240 6 1 10 9

MB smooth rough p600 p240

smooth 12 0 2 2
rough 0 10 1 5
p600 1 7 7 2
p240 2 9 0 6

Fig. 7 shows that both of the above features are use-
ful across the first three experimental settings. Specifi-

cally, the binary rough vs. non-rough onset regions are

in similar positions across all datasets. This is impor-

tant as it shows that they are not due to non-texture-

related artifacts in individual settings. Conversely, the
more finer-grained, offset discrimination between sand-

paper and rough perspex is possible within each setting,

but these regions vary greatly between settings.

We applied the same maximum-likelihood (‘winner-
take-all’) Gaussian classifier and confusion matrix anal-

ysis as in the neural network model, to give the results

of Table 2 for the individual settings.
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Fig. 7: Onset and offset (OO) feature values for data sets i–iii.
Textures are: smooth perspex sheet (dots), fine-grade P600 sand-
paper (‘x’s), medium-grade P240 sandpaper (‘+’s), and rough
perspex sheet with regular 2mm-spaced grooves (‘*’s).

3.3 Biologically inspired frequency features from
Cortical responses

Recordings of neuronal firing patterns obtained from
cells in the whisker sensory (“barrel”) cortex of anes-

thetized, head-fixed rats whisking against textured sur-

faces suggest the possibility of using frequency-based

features to perform texture classification. In vivo an-

imal experiments [2] played pure sinusoidal vibration

stimulations into whiskers and found cortical cells re-

sponded to the product Xω of the amplitude and fre-

quency of these vibrations. Texture experiments [3] gen-
eralized this, playing back pre-recorded texture vibra-

tions, and the best found feature responded to by cor-

tical neurons was

〈Xω〉 =

∫

Ω

∫

T

|X(ω, t)|ωdωdt (12)

This is equal to the amplitude-weighted mean frequency,

or centroid, averaged over time. This same feature has

been found useful in musical audio analysis [11], as it
can represent the average musical pitch. Musical clas-

sifiers often use it in conjunction with a ‘total energy’

feature which gives information about the onset type of

musical nodes, analogous to the onsets of whiskers con-
tacting a surface: this suggests trying the energy feature

in the whisker texture domain too. In our analysis, the

average over time is implicit as we work with a large-

window DFT containing all time points of interest.

[17] proposed that the centroid and energy of the
contact period spectrum could correspond to the phys-

ical frequency and depths of bumps in the texture sur-

face. Hipp et al. then tested this hypothesis in exper-

iments in which actuated 80mm steel whiskers were
moved against a variety of textured surfaces. For each

whisk the spectrum of the whole whisk cycle was then

analysed for the centroid and energy features which

were input into a Gaussian classifier as in section 2.3.

This system achieved 75% of the classification accu-
racy of a Gaussian classifier based on the entire binned

spectrum (similar to our neural network in section 3.1),

showing it to be a useful statistic of the spectrum with

respect to the classification task.
Following these precedents we investigated the suit-

ability of frequency-based classification of data from our

own robotic whisking data. To obtain the required fea-

tures we first low-pass filtered the lower fifth of the

DFT spectrum to remove overall bending effects as in
[17]. Here the DFT was taken over the whole contact

period, excluding onset and offsets, which in the mobile

robot setting (iii) was of variable length, therefore the

centroid was normalized in the spectral domain (as the
DFT is of variable size), and the energy normalized per

unit time as follows:

centroid =
1

N

N
∑

ω=N/5

ω.X [ω] (13)

energy =
1

N

N
∑

ω=N/5

X [ω] (14)
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Table 3: Confusion matrices for centroid-energy (CE) classifier.
Means and standard deviations of the posterior percentage cor-
rect classification are: FB = 56 ± 5%, FD = 42 ± 7%, MB =
41± 9%.

FB smooth rough p600 p240

smooth 25 0 5 2
rough 0 30 0 3
p600 20 1 2 9
p240 8 8 2 15

FD smooth rough p600 p240

smooth 22 0 3 1
rough 11 5 5 5
p600 3 2 9 12
p240 2 1 15 8

MB smooth rough p600 p240

smooth 9 4 3 0
rough 1 7 5 3
p600 3 4 7 3
p240 4 3 6 4

Results using these frequency features are shown in

Figure 8 and Table 3. For the fixed brushing exper-
iment, the features performed excellently, separating

smooth perspex, P240 sandpaper and rough perspex.

However for the dabbing and mobile brushing settings

their utility deteriorates greatly. In the dabbing case

the difficulty is that there is only a short non-onset
contact period in which to examine the spectrum be-

fore the whisker becomes stuck against the surface. The

mobile case is more interesting, however, here variabil-

ity in the distance and angle to the surface appears to
detract from the usefulness of frequency features as the

same surface at a larger distance will produce a higher

frequency due to the increased whisk radius.

3.4 Biologically inspired features from the whisker

primary afferents

In previous work [23], [27] we constructed a biomimetic

model of transduction in the whisker follicle. This elec-

tromechanical model transforms patterns of mechanical

whisker stimulation into their initial encoding as pat-
terns of neural firing in primary afferent neurons (PAs)

associated with each whisker follicle. This PA activity is

passed up to the brainstem trigeminal sensory complex

via the trigeminal nerve. Statistics of the spike trains
from these simulated PAs may be used to drive a tex-

ture classifier.

The first part of the model is a mechanical simu-

lation of the components of the follicle, including the

whisker itself. External inputs are forces from the mus-
cles and elastic tissues driving the follicle capsule to

whisk, along with forces applied to the whisker shaft

or tip by environmental obstructions. The output of
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Fig. 8: Frequency centroid and energy (CE) features for experi-
mental settings i-iii. Textures are: smooth perspex sheet (dots),
fine-grade P600 sandpaper (‘x’s), medium-grade P240 sandpaper
(‘+’s), and rough perspex sheet with regular 2mm-spaced grooves
(‘*’s).

the mechanical model is the strains in the tissues that

are the seat of various whisker follicle mechanoreceptor
families. In particular, the model derives tissue strains

that are Rapidly Adapting (RA) or Slowly Adapting

(SA) to tonic stimuli, leading to the most often re-

ported dichotomy in observed PA responses. The SA
and RA populations in the model each comprise 20 neu-

rons arranged in a ring around the base of the whisker,

responding to strains in different orientations.
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These strains form the input to the second part of

the model, consisting of a number of pre-processing op-

erations, followed by a bank of conventional integrate-

and-fire models representing the PAs themselves. The

pre-processing operations are derived from observations
of PA responses to time-varying stimuli. Three govern

instantaneous response: gain, projection onto a vec-

tor representing maximal sensitivity (the whisker de-

flections are vectors), and a nonlinear response curve.
In addition, temporal response is represented through

stimulus adaptation and stimulus memory.

Responses of the model to simple passive whisker

deflections are not complex: for example, step deflec-

tions generate phasic and tonic responses through RA
and SA afferents, respectively. Responses to more com-

plex stimuli are much less intuitive and comparable bio-

logical data are generally lacking. The results presented

here use the model of [23] – the revised model of [27]
would give similar values for the simple features used

here.

Examples of simulated RA and SA responses ob-

tained from the whiskered robot in the FD setting are

shown in Figures 9a, 9b and 9c, along with the raw
strain data for comparison. We next examine the util-

ity of these responses as features.

On inspection, the local RA rates (summed over the

20 neurons in the population) appear to function well as
an onset detector, so can be used to replace our previ-

ous, hand-picked onset detector. We use a fixed thresh-

old to first detect the presence of an onset, and then

employ the mean firing rate during the following 10ms

period as our onset feature (for use in texture classifi-
cation). Following the onset, SA cells continue to fire

at rates which depend on both the amplitude and fre-

quency of the whisk wave. We therefore used the mean

firing rate of the SA cells (summed over the population)
during a 100ms post-onset period a second feature. Fig.

10 and Table 4 show the performance of this RA/SA

feature pair. As with the other features, the PA classi-

fier separates well within each setting, but the classifi-

cation boundaries are different across settings (note the
changes of scale on the axes especially).

3.5 Across-setting results

While we do not have enough data from settings (i-iii)
to form a sufficient sample from all possible whisker-

base position and angle settings, it is still of interest to

plot all three of these data sets on the same axes, in

order to visualize how the features perform in a more
general environment. Recall that most previous animal

and robotic work has performed classification in some

single ‘head-fixed’ setting only, raising the concern that
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Fig. 10: Slowly Adapting (SAL) and Rapidly Adapting (RAS)
simulated primary afferent (PA) cell firing rate features. Tex-
tures are: smooth perspex sheet (dots), fine-grade P600 sand-
paper (‘x’s), medium-grade P240 sandpaper (‘+’s), and rough
perspex sheet with regular 2mm-spaced grooves (‘*’s).

such classifications may not generalize beyond those

specific circumstances. Results from this across-setting
analysis are shown in fig. 11. The subsequent three con-

fusion matrices correspond to the three feature pairs

(OO=onset-offset; CE=centroid-energy; PA=primary af-

ferent) when used on the inter-setting data as in the

scatter plots.

All the features except offset seem reasonably use-

ful for generalized binary rough-smooth classification:

however the 3 frequency-based features (including SA
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(c) Rough perspex

Fig. 9: Examples of raw base strain, Slowly Adapting spikes and Rapidly Adapting spikes for three textures, all in the Fixed Dabbing
(FD) setting. Both neural populations are made of 20 neurons arranged in a circle around the whisker base, and which therefore
respond to deflections in different orientations. The 20 neurons are shown along the vertical axes of the spike plots. The dashed lines
indicate the start of the fixed-length contact window whose start location is determined using the RA onset detector. Summed RA
activity for a short period following initial onset, to the second dashed line, forms the RA feature. Summed SA activity from the first
to the third dashed lines forms the SA feature.



12

Table 4: Confusion matrices for primary afferent (PA) classifier.
Means and standard deviations of the posterior percentage cor-
rect classification are: FB = 76 ± 4%, FD = 73 ± 5%, MB =
71± 7%.

FB smooth rough p600 p240

smooth 32 0 0 0
rough 0 33 0 0
p600 19 1 7 5
p240 0 0 5 28

FD smooth rough p600 p240

smooth 26 0 0 0
rough 1 21 0 4
p600 0 2 14 10
p240 0 1 10 15

MB smooth rough p600 p240

smooth 15 0 1 0
rough 1 11 0 4
p600 2 1 11 3
p240 1 3 3 10

Table 5: Confusion matrices each classifier, over all settings.
Means and standard deviations of the posterior percentage cor-
rect classification are: OO = 60 ± 4%, CE = 46 ± 4%, PA =
61± 4%.

OO smooth rough p600 p240

smooth 60 2 0 12
rough 4 60 4 7
p600 18 12 25 20
p240 28 7 6 35

CE smooth rough p600 p240

smooth 65 2 3 4
rough 21 44 1 0
p600 35 17 7 16
p240 22 26 8 20

PA smooth rough p600 p240

smooth 67 0 4 3
rough 11 52 2 10
p600 22 9 8 36
p240 11 4 5 56

rate, which depends on frequency) suffer in setting ii

and iii due to the problems of short dabbing distances
and variable whisk radius discussed above.

3.6 Combining classifiers

It is often possible to construct a more powerful classi-

fier by combining features. Table 6 shows results using a

6-dimensional Gaussian classifier, operating on all three
of our feature pairs (onset, offset, centroid, energy, SAL

and RAS) over all settings, as in the previous section.

It can be seen that the combined classifier gives ad-

ditional power in 4-way classification over all settings,

and beats the neural neural network model of section
3.1. We performed a similar analysis for the case of 2-

way (rough/smooth) classification, shown in table 7. In

the two-way case, we found that the combined classifier
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Fig. 11: Samples from datasets (i-iii) combined analysed using (a)
onset-offset features (b) frequency features (c) RA/SA features
as before

Table 6: Confusion matrix for the 6-dimensional, combined fea-
ture classifier, running on all settings together. The mean and
standard deviation of the posterior percentage correct classifica-
tion is 72± 3%.

ALL smooth rough p600 p240

smooth 67 3 3 1
rough 5 55 11 4
p600 0 32 37 6
p240 1 4 14 57
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Table 7: Confusion matrices for the 6-dimensional combined fea-
ture classifier; for the three feature pairs; and for single onset
and offset features; each over all settings together. Means and
standard deviations of the posterior percentage correct classifi-
cation are: COMBINED = 91 ± 2%, OO = 92 ± 2%, CE =
81± 4%, PA = 91± 2%, onset = 91± 2%, offset = 78± 4%.

COMBINED smooth rough

smooth 67 7
rough 6 69

OO smooth rough

smooth 69 5
rough 7 68

CE smooth rough

smooth 8 6
rough 22 53

PA smooth rough

smooth 74 0
rough 12 63

onset smooth rough

smooth 69 5
rough 8 67

offset smooth rough

smooth 68 6
rough 26 49

has no significant advantage over the onset-offset clas-

sifier or the PA classifier alone. Furthermore, training
one-dimensional Gaussian models on the individual on-

set and onset features showed that the onset classifier

alone achieves similar power to the combined classifier.

This is of interest because the onset feature may be

computed rapidly from initial contact data only, with-
out waiting for the whisk to complete.

3.7 An online classifier

Having shown that the onset feature alone performs as

well as the combination of all features in rough-smooth

classification over all settings, we stress-tested this fea-
ture in the highly challenging task of classifying the 500

samples collected in setting (iv) from random whisking

positions and orientations using the smooth and rough

surfaces. Classification of this data was performed in

real-time, requiring the use of fast cumulative update
forms of the mean and (unbiased) standard deviation

calculations of the T most recent strains x passed to

the onset classifier:

µt := µt−1 +
1

T
(xt − xt−T−1) (15)

at := at−1 +
1

T − 1
(x2

t − x2
t−T−1) (16)

σ2
t := at −

T

T − 1
µ2

t (17)

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

feature value

re
l. 

fr
eq

.

smooth
rough

Fig. 12: Histogrammed values of a single discriminator function,
from 500 whisks at random hand-held orientations and distances.

These update equations use internal state variables to

avoid the need for the large sums µt :=
∑t

i=t−T xi and

σ2
t :=

∑t
i=t−T (xi − µ)2 to be recomputed from scratch

on the arrival of each new data point. As in the offline
studies, it is necessary to obtain mean and standard

deviations for every possible window location, as they

are needed by the onset detector, in order to detect the

location of the onset before classification proper begins.
Fig. 12 shows the empirical distribution of the onset

features in the rough and smooth classes.

The distributions are significantly different (ANOVA

shows the means are different (F (1, 495) = 53.096, p <

0.001, partial eta squared=0.097) and Levene’s test shows
the variances are also different (1, 494) = 51.466, p <

0.001). We can compute the expected strength of belief

in the correct class c after n whisks by

〈p(c|d1:n)〉c,d = 〈
π(c)

∏

N

i=1
p(di|c)

∑

c
π(c)

∏

N

i=1
p(di|c)

〉c,d (18)

=
∑

c

∫

d
π(c)2p(di|c)

2N

∑

c
π(c)p(di|c)N

(19)

Assuming that the data were generated by the maxi-

mum likelihood parameters of two class-conditional Gaus-

sians, and a flat prior on the classes; and computing the
integral numerically with Gaussian Monte Carlo sam-

ples, we find the probability of a Gaussian classifier giv-

ing the correct class after a single whisk is 0.562, and

after n whisks as shown in fig. 13. Such a classifier can
be seen to achieve an expected 90% belief in the correct

class after 9 whisks, 95% strength after 12 whisks, and

97.5% after 15 whisks.
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Fig. 13: Expected correct belief strength after n whisks in the
random position task, using the onset feature only.

4 Discussion

This is the first work to present quantitative results

in mobile whiskered texture discrimination, and the

second (after [12]) to consider cross-setting discrimi-
nation. Previous studies with artificial whiskers pro-

duced good classifiers using low-level DFT features with

generic parametric classifiers (e.g. 85% accuracy across

7 classes [19]) but under constrained conditions in which

the interaction of the whisker with the surface was un-
der tight experimental control. To overcome this limi-

tation we tested several higher-level candidate features

within and across three different experimental settings.

Our principal findings can be summarised as follows.
All candidate features tested were found to be useful

within settings, i.e. where the interaction of the whisker

with the surface was highly constrained. However, the

frequency-based classifiers did not generalize particu-

larly well across settings. The two best performing clas-
sifiers (see Table 7) were those based on the primary af-

ferent model (PA) and on the onset feature. Combining

all of the features produced a small accuracy improve-

ment over the neural network replicated from [12], over
all settings. The onset feature has the advantage that it

can be computed very quickly following the initial con-

tact with the surface, and gives a similar accuracy to

the combined classifier in the two-class (rough,smooth)

case across the settings.

The onset feature was further found to be useful

for two-class (rough,smooth) discrimination across a
set of highly randomized positions, requiring around

7 whisks to achieve 85% correct beliefs and 10 whisks

to achieve 95% correct beliefs. In comparison, animal

experiments [10] found a 85% success rate for trained
rats making similar discriminations, typically making 1-

5 whisks with multiple whisker contacts per whisk (46%

of contacts were made with a single whisker; 36% with

2 whiskers; 18% with 3 whiskers) before the decision.

For a single whisk (typically having two whisker con-

tacts) the rats achieved 73% accuracy; in contrast our

classifier requires three contacts to reach a similar ac-

curacy, and reaches about 65% accuracy with only two
contacts. So in this task our classifier is comparable to

the rat, though the success rate is marginally lower.

We conjecture that the other features could be of

more use if position and angle relative to the surface
were known a priori, as we have seen that once the set-

ting is known, good classifiers can be built using them.

It is further possible that by introducing latent variables

such as distance and angle from the surface, a good clas-

sifier may be found in the resulting higher-dimensioned
space, generalizing over all possible settings. Frequency

features in particular should be expected to be depen-

dent on the radius and angle of contact with the sur-

face, as physical frequencies in the texture will give rise
to different whisker vibrations depending on this po-

sitioning. Methods for estimating the contact location

are known (see below) and could in future be used to

provide such prior information to the texture classifiers.

Alternatively, the position information could be used to
affect the agent’s movements in order to bring the ob-

ject to some standard position in the whisker field, then

a simpler classifier, independent of position informa-

tion, could be used. However for rapid decision-making,
the onset feature provides a simple and effective way to

make crude rough/smooth judgments before these more

advanced inferences take place.

Which of the two above positional strategies – higher-

dimensional classification and active positioning – are
used by whiskered animals such as the rat? An answer

to this question could inform the choice of strategy for

robot platforms. There is some evidence in support of

each strategy.

First, using biomechanical modeling and data ob-
tained using plucked rat whiskers, Birdwell et al. [6]

have shown that the radial distance to a point of contact

can, in principle, be calculated by measuring the rate

of change of moment (or equivalently curvature) at the
whisker base. Further, this method has been shown to

be useful for recovering distance information in an arti-

ficial vibrissal sensing system using steel-wire whiskers,

gauged for strain, and fitted to a columnar whisking

apparatus exploring a complex three-dimensional shape
[36].

Second, behavioral data obtained by Carvell and Si-

mons [10], in animals that were trained to discriminate

texture for reward using only their macrovibrissae, pro-
vides evidence of an “active touch” strategy [25] that

rats may use to optimise their texture discrimination

capabilities. Specifically, they observed that while some
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of the longer, more caudal, macrovibrissae were whisked

back and forth across the target surface, presumably

to obtain texture-related information, a number of the

smaller rostralmost hairs remained in a “relatively mo-

tionless, protracted state [...] never losing contact with
the surface” (p. 2641). It seems possible, then, that this

use of the smaller whiskers could provide the rat with

reference signals that might allow it measure, or con-

trol for, variance in the position of the larger whiskers
relative to the target.

Finally, it is worth mentioning that, when allowed

to do so, animals will often investigate textures with

their shorter microvibrissae and other tactile sensory

surfaces around the mouth [15]. In these circumstances
the longer macrovibrissae may serve an important role

in object detection and coarse feature discrimination,

whilst also acting as a trigger for orienting movements

that bring surfaces of interest into the ‘foveal zone’ of
the shorter and more densely arranged microvibrissae

(see [15] and figure 14). Contacts with this microvib-

rissal array, in addition to being more numerous, should

be at distances and orientations that are both less vari-

able and more predictable, thus signal features such as
those considered in this article could be used – per-

haps via a continuum of slow to rapid adapting affer-

ents – to perform detailed texture classification. Brecht

et al. [9] have similarly proposed that the microvibrissae
may be the rats preferred tactile apparatus for making

judgements regarding fine spatial detail, whilst Hart-

mann [15] has described rat exploration strategies in

which micro- and macrovibrissal placements are either

synchronized or co-ordinated in predictable sequences.
Further experiments with a range of artificial whisker

sensors are needed to determine whether some similar

mix of short and long sensing elements, with the latter

supporting a detecting/orienting capacity, might also
be useful in autonomous whiskered robots.
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