Skip to main content
Log in

Representing and evaluating ultrasonic maps using active snake contours and Kohonen’s self-organizing feature maps

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Active snake contours and Kohonen’s self-organizing feature maps (SOMs) are employed for representing and evaluating discrete point maps of indoor environments efficiently and compactly. A generic error criterion is developed for comparing two different sets of points based on the Euclidean distance measure. The point sets can be chosen as (i) two different sets of map points acquired with different mapping techniques or different sensing modalities, (ii) two sets of fitted curve points to maps extracted by different mapping techniques or sensing modalities, or (iii) a set of extracted map points and a set of fitted curve points. The error criterion makes it possible to compare the accuracy of maps obtained with different techniques among themselves, as well as with an absolute reference. Guidelines for selecting and optimizing the parameters of active snake contours and SOMs are provided using uniform sampling of the parameter space and particle swarm optimization (PSO). A demonstrative example from ultrasonic mapping is given based on experimental data and compared with a very accurate laser map, considered an absolute reference. Both techniques can fill the erroneous gaps in discrete point maps. Snake curve fitting results in more accurate maps than SOMs because it is more robust to outliers. The two methods and the error criterion are sufficiently general that they can also be applied to discrete point maps acquired with other mapping techniques and other sensing modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altun, K., & Barshan, B. (2008). Performance evaluation of ultrasonic arc map processing techniques by active snake contours. In H. Bruyninckx, L. Preucil, & M. Kulich (Eds.), Springer tracts in advanced robotics (STAR) series : Vol. 44. European robotics symposium 2008 (pp. 185–194). Berlin: Springer.

    Chapter  Google Scholar 

  • Barshan, B. (1999). Ultrasonic surface profile determination by spatial voting. Electronics Letters, 35(25), 2232–2234.

    Article  Google Scholar 

  • Barshan, B. (2007). Directional processing of ultrasonic arc maps and its comparison with existing techniques. International Journal of Robotics Research, 26(8), 797–820.

    Article  Google Scholar 

  • Barshan, B. (2008). Objective error criterion for evaluation of mapping accuracy based on sensor time-of-flight measurements. Sensors, 8(12), 8248–8261.

    Article  Google Scholar 

  • Barshan, B., & Başkent, D. (2000). Comparison of two methods of surface profile extraction from multiple ultrasonic range measurements. Measurement Science and Technology, 11(6), 833–844.

    Article  Google Scholar 

  • Barshan, B., & Başkent, D. (2001a). Morphological surface profile extraction with multiple range sensors. Pattern Recognition, 34(7), 1459–1467.

    Article  MATH  Google Scholar 

  • Barshan, B., & Başkent, D. (2001b). Map building from range data using mathematical morphology. In P. P. Smith (Ed.), World scientific series in robotics and intelligent systems : Vol. 26. Active sensors for local planning in mobile robotics (pp. 111–135). New Jersey: World Scientific (Chapter 7).

    Chapter  Google Scholar 

  • Başkent, D., & Barshan, B. (1999). Surface profile determination from multiple sonar data using morphological processing. International Journal of Robotics Research, 18(8), 788–808.

    Article  Google Scholar 

  • Borgefors, G. (1986). Distance transformations in digital images. Computer Vision, Graphics, and Image Processing, 34(3), 344–371.

    Article  Google Scholar 

  • Choset, H., Nagatani, K., & Lazar, N. (2003). The arc-transversal median algorithm: a geometric approach to increasing ultrasonic sensor azimuth accuracy. IEEE Transactions on Robotics and Automation, 19(3), 513–522.

    Article  Google Scholar 

  • Cohen, L. D. (1991). On active contour models and balloons. Computer Vision, Graphics, and Image Processing (CVGIP): Image Understanding, 53(2), 211–218.

    MATH  Google Scholar 

  • Cohen, L. D., & Cohen, I. (1993). Finite element methods for active contour models and balloons for 2-D and 3-D images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(11), 1131–1147.

    Article  Google Scholar 

  • Crowley, J. L. (1985). Navigation for an intelligent mobile robot. IEEE Transactions on Robotics and Automation, RA-1(1), 31–41.

    MathSciNet  Google Scholar 

  • Drumheller, M. (1987). Mobile robot localization using sonar. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(2), 325–332.

    Article  Google Scholar 

  • Elfes, A. (1987). Sonar based real-world mapping and navigation. IEEE Transactions on Robotics and Automation, RA-3(3), 249–265.

    Google Scholar 

  • Gex, W., & Campbell, N. (1987). Local free space mapping and path guidance. In Proceedings of IEEE international conference on robotics and automation (pp. 424–431).

  • Jacob, M., Blu, T., & Unser, M. (2004). Efficient energies and algorithms for parametric snakes. IEEE Transactions on Image Processing, 13(9), 1231–1244.

    Article  Google Scholar 

  • Kass, M., Witkin, A., & Tersopoulos, D. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks (Vol. 4, pp. 1942–1948).

  • Knopf, G. K., & Sangole, A. (2004). Interpolating scattered data using 2D self-organizing feature maps. Graphical Models, 66(1), 50–69.

    Article  Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1), 59–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Kuc, R., & Siegel, M. W. (1987). Physically-based simulation model for acoustic sensor robot navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-9(6), 766–778.

    Article  Google Scholar 

  • Kumar, G. S., Kalra, P. K., & Dhande, S. G. (2004). Curve and surface reconstruction from points: an approach based on self-organizing maps. Applied Soft Computing, 5(1), 55–66.

    Article  Google Scholar 

  • Kurz, A. (1996). Constructing maps for mobile robot navigation based on ultrasonic range data. IEEE Transactions on Systems, Man, and Cybernetics—Part B: Cybernetics, 26(2), 233–242.

    Article  Google Scholar 

  • Leonard, J. J., & Durrant-Whyte, H. F. (1992). Directed sonar sensing for mobile robot navigation. Boston: Kluwer Academic.

    MATH  Google Scholar 

  • Liang, J., McInerney, T., & Terzopoulos, D. (2006). United snakes. Medical Image Analysis, 10(2), 215–233.

    Article  Google Scholar 

  • Menet, S., Saint-Marc, P., & Medioni, G. (1990). Active contour models: overview, implementation and applications. In Proceedings of the IEEE international conference on systems, man and cybernetics (pp. 194–199).

  • Özertem, U., & Erdoğmuş, D. (2007). Nonparametric snakes. IEEE Transactions on Image Processing, 16(9), 2361–2368.

    Article  MathSciNet  Google Scholar 

  • Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization—an overview. Swarm Intelligence, 1(1), 33–57.

    Article  Google Scholar 

  • Ribas, D., Ridao, P., Neira, J., & Tardós, J. D. (2007). Line extraction from mechanically scanned imaging sonar. In Lecture notes in computer science : Vol. 4477. Pattern recognition and image analysis (pp. 322–329). Berlin: Springer.

    Chapter  Google Scholar 

  • Rosenfeld, A., & Pfaltz, J. L. (1968). Distance functions on digital pictures. Pattern Recognition, 1(1), 33–61.

    Article  MathSciNet  Google Scholar 

  • Tardós, J. D., Neira, J., Newman, P. M., & Leonard, J. J. (2002). Robust mapping and localization in indoor environments using sonar data. International Journal of Robotics Research, 21(4), 311–330.

    Article  Google Scholar 

  • Wijk, O., & Christensen, H. I. (2000a). Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data. Robotics and Autonomous Systems, 31, 31–42.

    Article  Google Scholar 

  • Wijk, O., & Christensen, H. I. (2000b). Triangulation-based fusion of sonar data with application in robot pose tracking. IEEE Transactions on Robotics and Automation, 16(6), 740–752.

    Article  Google Scholar 

  • Xu, C., & Prince, J. L. (1998). Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.

    Article  MATH  MathSciNet  Google Scholar 

  • Yamada, S. (2004). Recognizing environments from action sequences using self-organizing maps. Applied Soft Computing, 4(1), 35–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billur Barshan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altun, K., Barshan, B. Representing and evaluating ultrasonic maps using active snake contours and Kohonen’s self-organizing feature maps. Auton Robot 29, 151–168 (2010). https://doi.org/10.1007/s10514-010-9181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9181-4

Keywords

Navigation