Skip to main content
Log in

Planning and control of under-actuated mobile manipulators using differential flatness

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Mobile manipulators are intrinsically nonholonomic systems since the mobile base is subject to nonholonomic constraints that result from no-slip constraints on the wheels. The highly nonlinear dynamic coupling between the mobile base and the manipulator arm, in addition to the nonholonomic constraints at the base, makes these systems difficult to plan and control. If the system is under-actuated, the problem becomes even more difficult.

In this paper, using a special inertia distribution on the manipulator arm, the differential flatness property of mobile manipulators is achieved. An integrated planning and control methodology is presented for two different types of under-actuated planar mobile manipulators, with a two-wheeled differentially driven mobile base and with a car-like mobile base, respectively. A mobile manipulator with either of the two bases is shown to be differentially flat. In addition, this paper shows that a wide range of under-actuated arm designs results in differential flatness. Through illustrative examples of under-actuated two-link planar mobile manipulators, it is demonstrated that with the differential flatness property, the trajectory planning and feedback controller design problem can be solved in an efficient and simplified way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

TWMB:

Two-Wheeled Mobile Base

CLMB:

Car-Like Mobile Base

m 0 :

mass of the TWMB

I 0 :

moment of inertia of the TWMB

r :

radius of the TWMB’s wheel

b :

half the distance between the TWMB’s two wheels

m b :

mass of the CLMB except for the front wheel

I b :

moment of inertia of the CLMB except for the front wheel

m w :

mass of the CLMB’s front wheel

I w :

moment of inertia of the CLMB’s front wheel

R :

radius of the CLMB’s front wheel

I 1 :

moment of inertia of the first link of the arm

I 2 :

moment of inertia of the second link of the arm

References

  • Agrawal, S. K., & Sangwan, V. (2008). Differentially flat designs of underactuated open-chain planar robots. IEEE Transactions on Robotics, 24(6), 1445–1451.

    Article  Google Scholar 

  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In Differential geometric control theory (pp. 181–191). Boston: Birkhauser.

    Google Scholar 

  • DeLuca, A. & Oriolo, G. (2002). Trajectory planning and control for planar robots with passive last joint. International Journal of Robotics Research, 21(5–6), 575–590.

    Google Scholar 

  • Dixon, W., Dawson, D., Zergeroglu, E., & Zhang, F. (2000). Robust tracking and regulation control for mobile robots. International Journal of Robust and Nonlinear Control, 10(4), 199–216.

    Article  MATH  MathSciNet  Google Scholar 

  • Faiz, N., Agrawal, S. K., & Murray, R. M. (2001). Trajectory planning of differentially flat systems with dynamics and inequalities. Journal of Guidance Control and Dynamics, 24(2), 219–227.

    Article  Google Scholar 

  • Jakubiak, J., & Tchon, K. (2001). The continuous inverse kinematic problem for mobile manipulators: A case study in the dynamic extension. In Proc. IEEE int. conf. on robotics and automation (pp. 2401–2406).

  • Kobayashi, K., & Yoshikawa, T. (2002). Controllability of under-actuated planar manipulators with one unactuated joint. International Journal of Robotics Research, 21(5–6), 555–561.

    Google Scholar 

  • Laumond, J. (Ed.) (1998). Lecture notes in control and information sciences. Robot motion planning and control. Berlin: Springer.

    Google Scholar 

  • Lewis, F. L., Dawson, D. M., & Abdallah, C. T. (2004). Robot manipulator control: theory and practice (2nd ed.). New York: Dekker.

    Google Scholar 

  • Li, Z., Ming, A., Xi, N., & Shimojo, M. (2006). Motion control of nonholonomic mobile underactuated manipulator. In Proc. IEEE int. conf. on robotics and automation (pp. 3512–3519).

  • Lin, S., & Goldenberg, A. A. (2001). Neural-network control of mobile manipulators. IEEE Transactions on Neural Networks, 12(5), 1121–1133.

    Article  Google Scholar 

  • Oriolo, G., Luca, A. D., & Vendittelli, M. (2002). WMR control via dynamic feedback linearization: Design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6), 835–852.

    Article  Google Scholar 

  • Pin, F. G., Morgansen, K. A., Tulloch, F. A., Hacker, C. J., & Gower, K. B. (1996). Motion planning for mobile manipulators with a non-holonomic constraint using the FSP (Full Space Parameterization) method. Journal of Robotic Systems, 13(11), 723–736.

    Article  MATH  Google Scholar 

  • Ryu, J.-C., Sangwan, V., & Agrawal, S. K. (2007). Differentially flat designs of mobile vehicles with under-actuated manipulator arms. In Proc. ASME int. mechanical engineering congress and exposition (IMECE) IMECE2007 (pp. 43–526).

  • Sangwan, V., & Agrawal, S. K. (2007). Differentially flat designs of bipeds ensuring limit cycles. In Proc. IEEE int. conf. on robotics and automation (pp. 3585–3590).

  • Sira-Ramirez, H., & Agrawal, S. K. (2004). Differentially flat systems. New York: Dekker.

    MATH  Google Scholar 

  • Slotine, J.-J. E., & Li, W. (1991). Applied nonlinear control. New York: Prentice Hall.

    MATH  Google Scholar 

  • Spong, M. W., & Vidyasagar, M. (1989). Robot dynamics and control. New York: Wiley.

    Google Scholar 

  • Tanner, H. G., Loizou, S., & Kyriakopoulos, K. J. (2003). Nonholonomic navigation and control of cooperating mobile manipulators. IEEE Transactions on Robotics and Automation, 19(1), 53–64.

    Article  Google Scholar 

  • Tsai, C.-C., Cheng, M.-B., & Lin, S.-C. (2006). Dynamic modeling and tracking control of a nonholonomic wheeled mobile manipulator with dual arms. Journal of Intelligent and Robotic Systems, 47(4), 317–340.

    Article  Google Scholar 

  • Yamamoto, Y., & Yun, X. (1994). Coordinating locomotion and manipulation of a mobile manipulator. IEEE Transactions on Automatic Control, 39(6), 1326–1332.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryu, JC., Agrawal, S.K. Planning and control of under-actuated mobile manipulators using differential flatness. Auton Robot 29, 35–52 (2010). https://doi.org/10.1007/s10514-010-9185-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9185-0

Keywords

Navigation