Skip to main content
Log in

A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In todays aging society, many people require mobility assistance, that can be provided by robotized assistive wheelchairs with a certain degree of autonomy when manual control is unfeasible due to disability.

Robot wheelchairs, though, are not supposed to be completely in control because lack of human intervention may lead to loss of residual capabilities and frustration. Most of these systems rely on shared control, which typically consists of swapping control from human to robot when needed. However, this means that persons never deal with situations they find difficult. We propose a new shared control approach to allow constant cooperation between humans and robots, so that assistance may be adapted to the user’s skills. Our proposal is based on the reactive navigation paradigm, where robot and human commands become different goals in a Potential Field. Our main novelty is that human and robot attractors are weighted by their respective local efficiencies at each time instant. This produces an emergent behavior that combines both inputs in an efficient, safe and smooth way and is dynamically adapted to the user’s needs. The proposed control scheme has been successfully tested at hospital Fondazione Santa Lucia (FSL) in Rome with several volunteers presenting different disabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aigner, P., & McCarragher, B. J. (2000). Modeling and constraining human interactions in shared control utilizing a discrete event framework. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 30(3), 369–379.

    Article  Google Scholar 

  • Albus, J. S. (1991). Outline for a theory of intelligence. IEEE Transactions on Systems, Man, and Cybernetics, 21(3), 473–509.

    Article  MathSciNet  Google Scholar 

  • Bonasso, R. P. (1991). Integrating reaction plans and layered competences through synchronous control. In Proceedings of the international joint conference on artificial intelligence (pp. 1225–1233).

    Google Scholar 

  • Borenstein, J., Everett, B., & Feng, L. (1996). Navigating mobile robots: sensors and techniques. Wellesley: A.K. Peters.

    MATH  Google Scholar 

  • Bourhis, G., & Agostini, Y. (1998). The vahm robotized wheelchair: system architecture and human-machine interaction. Journal of Intelligent Robotic Systems, 22(1), 39–50.

    Article  Google Scholar 

  • Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.

    Google Scholar 

  • Bruemmer, D. J., Few, D. A., Boring, R. L., Marble, J. L., Walton, M. C., & Nielsen, C. W. (2005). Shared understanding for collaborative control. IEEE Transactions on Systems, Man and Cybernetics. Part A. Systems and Humans, 25(4), 494–504.

    Article  Google Scholar 

  • Ciole, R., & Trusko, B. (1999). In HealthCare 2020: challenges for the millennium (pp. 34–38).

  • Clarke, D., Yen, S., Kondraske, G. V., Khoury, G. J., & Maxwelle, K. J. (1991). Telerobotic network workstation for system performance and operator workload monitoring (Tech. Rep. 91-013R). NASA JSC, Houston, TX.

  • Connell, J. H., & Viola, P. (1990). Cooperative control of a semi-autonomous mobile robot. In Proc. of the IEEE conference on robotics and automation (pp. 1118–1121). Cincinnati, USA.

    Chapter  Google Scholar 

  • Cooperstock, J., Pineau, J., Precup, D., Atrash, A., Jaulmes, R., Kaplow, R., Lin, N., Prahacs, C., Villemure, J., & Yamani, H. (2007). Smartwheeler: a robotic wheelchair test-bed for investigating new models of human-robot interaction. In Proc. of the IEEE conference on intell. robots and systems (IROS). San Diego, USA.

    Google Scholar 

  • Cortés, U., Annicchiarico, R., Campana, F., Vázquez-Salceda, J., Urdiales, C., Cañamero, L., López, M., Sánchez-Marré, M., Vincenzo, S. D., & Caltagirone, C. (2004). Intelligenza artificiale in medicina: progetto di una piattaforma mobile inserita in un ambiente intelligente per li assistenza ai disabili e agli anziani. Recenti Progressi in Medicina, 95(4), 190–195.

    Google Scholar 

  • Cortés, U., Urdiales, C., Annicchiarico, R., Barrue, C., Martinez, A. B., & Caltagirone, C. (2007). Assistive wheelchair navigation: a cognitive view (pp. 165–187). Berlin: Springer.

    Google Scholar 

  • Crisman, J., & Cleary, M. (1998). Progress on the deictic controlled wheelchair (pp. 137–149). Berlin: Springer.

    Google Scholar 

  • Crum, R., Anthony, J., Bassett, S., & Folstein, M. (1993). Population-based norms for the mini-mental state examination by age and educational level. Journal of the American Medical Association, 269(18), 2386–2391.

    Article  Google Scholar 

  • Darley, V. (1994). Emergent phenomena and complexity. Artificial life IV. Proceedings of the fourth international workshop on the synthesis and simulation of living systems (pp. 411–416). Cambridge: MIT Press.

    Google Scholar 

  • Demers, L., & Weiss-Lambrou, R. (2002). The assessment of assistive technology outcomes, effects and costs. Journal Technology and Disability, 14(3), 101–105.

    Google Scholar 

  • Detriche, J., & Lesigne, B. (1990). Robotic system master. In European conf. on the avancenient of rehabilitation technology (pp. 12–15). Maastricht: Pays-Bas.

    Google Scholar 

  • Dorais, G. A., Bonasso, R. P., Kortenkamp, D., Pell, B., & Schreckenghost, D. (1998). Adjustable autonomy for human-centered autonomous systems on Mars. In First int. conf. of the Mars Society.

    Google Scholar 

  • Ferguson, G., Allen, J., & Miller, B. (1996). Trains 95: towards a mixed initiative planning assistant. In Proc. of the third conf. on artificial intelligence planning systems (pp. 70–77).

    Google Scholar 

  • Fong, T., Thorpe, C., & Baur, C. (2003b). Robot, asker of questions. Robotics and Autonomous Systems, 42, 235 –243.

    Article  MATH  Google Scholar 

  • Fong, T., Thorpe, C., & Baur, C. (2003a). Multi-robot remote driving with collaborative control. IEEE Transactions on Industrial Electronics, 50(4), 699–704.

    Article  Google Scholar 

  • Fox, D., Burgard, W., Thrun, S., & Cremers, A. (1998). A hybrid collision avoidance method for mobile robots. In Proc. of IEEE int. conf. on robotics and automation (pp. 1238–1243).

    Google Scholar 

  • Frese, U., Larsson, P., & Duckett, T. (2005). A multigrid algorithm for simultaneous localization and mapping. IEEE Transactions on Robotics, 21(2), 1–12.

    Article  Google Scholar 

  • Galan, F., Nuttin, M., Lew, E., Ferrez, P. W., Vanacker, G., Philips, J., & Millan, J. R., (2008). A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clinical Neurophysiology.

  • Gomi, T., & Griffith, A. (1998). Developing intelligent wheelchairs for the handicapped (pp. 150–178). Berlin: Springer.

    Google Scholar 

  • Gunderson, J. P., & Martin, W. N. (1999). Effects of uncertainty on variable autonomy in maintenence robots. In Proc. of agents’99, workshop on autonomy control software.

    Google Scholar 

  • Guralnik, J. M., & Simonsick, E. M. (1993). Physical disability in older americans. Journal of Gerontology, 48, 3–10.

    Google Scholar 

  • Hexmoor, H., Castelfranchi, C., & Falcone, R. (Eds.) (2003). Agent autonomy. Multiagent systems, artificial societies, and simulated organizations (Vol. 7).

  • Horiguchi, Y., & Sawaragi, T. (2005). Effects of probing to adapt machine autonomy in shared control systems. In Proc. international conference on systems. Man and Cybernetics. Hawaii, USA (pp. 317–323).

    Chapter  Google Scholar 

  • Hu, H., & Brady, M. (1996). A parallel processing architecture for sensor based control of intelligent mobile robots. Robotics and Autonomous Systems, 17, 235–257.

    Article  Google Scholar 

  • Iturrate, I., Antelis, J., Minguez, J., & Kubler, A. (2009). Non-invasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Transactions on Robotics.

  • Ivanoff, S., & Sonn, U. (2005). Changes in the use of assistive devices among 90-year-old person. Aging Clinical and Experimental Research, 17(3), 246–251.

    Google Scholar 

  • Jaffe, D. (1990). A case study: the ultrasonic head controlled wheelchair and interface. OnCenter—Technology Transfer News 1(2).

  • Jutai, J., & Bortolussi, J. (2003). Psychosocial impact of assistive technology: development of a measure for children (pp. 936–940). Amsterdam: IOS Press.

    Google Scholar 

  • Katevas, N. L., Sgouros, N. M., Tzafestas, S. G., Papakonstantinou, G., Beattie, P., Bishop, J. M., Tsanakas, P., & Koutsouris, D. (1997). The autonomous mobile robot scenario: a sensor-aided intelligent navigation system for powered wheelchairs. IEEE Robotics Automation Magazine, 4(4), 60–70.

    Article  Google Scholar 

  • Khatib, O. (1986). Real-time obstacle avoidance for manipulators and mobile robots. International Journal of Robotics Research, 5(1), 90–98.

    Article  MathSciNet  Google Scholar 

  • Khoury, G. J., & Kondraske, G. V. (1991). Measurement and continuous monitoring of human workload associated with manual control devices (Tech. Rep. 91-011R). NASA JSC, Houston, TX.

  • Kilkens, O., Post, M., Dallmeijer, A., Seelen, H., & van der Woude, L. (2003). Wheelchair skills tests: a systematic review. Clinical Rehabilitation, 17(4), 418–430.

    Article  Google Scholar 

  • Kofman, J., Wu, X., Luu, T. J., & Verma, S. (2005). Teleoperation of a robot manipulator using a vision-based human-robot interface. IEEE Transactions on Industrial Electronics, 52(5), 1206–1219.

    Article  Google Scholar 

  • Kortenkamp, D., Bonasso, R. P., Ryan, D., & Schreckenghost, D. (1997). Traded control with autonomous robots as mixed initiative interaction. In Proc. AAAI spring symposium on mixed initiative interaction, Stanford, USA.

  • Mahoney, F., & Barthel, D. (1965). Functional evaluation: the Barthel index. Maryland State Medical Journal, 14, 56–61.

    Google Scholar 

  • Mandel, C., Huebner, K., & Vierhuff, T. (2005). Towards an autonomous wheelchair: cognitive aspects in service robotics. In Proceedings of towards autonomous robotic systems (TAROS 05) (pp. 165–172).

    Google Scholar 

  • Martin, C. E., Barber, K. S., & Barber, K. S. (1999). Agent autonomy: specification, measurement, and dynamic adjustment. In Proceedings of the autonomy control software workshop, Agents ’99 (pp. 8–15).

    Google Scholar 

  • Mazo, M. et al. (2001). An integral system for assisted mobility. IEEE Robotics and Automation Magazine, 1, 46–56.

    Article  Google Scholar 

  • McLachlan, S., Arblaster, J., Liu, D. K., Valls, J., & Chenoweth, L. (2005). A multi-stage shared control method for an intelligent mobility assistant. In Proc. of the 2005 IEEE 9th international conference on rehabilitation robotics (pp. 426–429). Chicago, USA. Berlin: Springer.

    Chapter  Google Scholar 

  • Millán, J. del R. et al. (2004). FP7 Exploratory Workshops: Workshop 5: Augmented human capabilities for empowering users and communities.

  • Miller, D. (1998). Assistive robotics: an overview (pp. 126–136). Berlin: Springer.

    Google Scholar 

  • Moravec, H. (1983). Stanford cart and the CMU rover. Proceedings of the IEEE, 71(7), 872–884.

    Article  Google Scholar 

  • Morris, A., Donamukkala, R., Kapuria, A., Steinfeld, A., Matthews, J. T., Dunbar-Jacob, J., & Thrun, S. (2003). A robotic walker that provides guidance. In Proc. of the 2003 ieee international conference on robotics and automation (pp. 25–30), Taipei, Taiwan.

    Google Scholar 

  • Murphy, R. R. (2004). Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man and Cybernetics. Part C. Application and Reviews. 34, 138–153.

    Article  Google Scholar 

  • Nilsson, N. J. (1984). Shakey the robot (Tech. Rep. 323) SRI International.

  • Nisbet, P., Craig, J., Odor, P., & Aitken, S. (1995). ‘Smart’ wheelchairs for mobility training. Technology Disability, 5, 49–62.

    Article  Google Scholar 

  • Norman, D. (1983). Design rules based on analyses of human error. Communications of the ACM, 26, 254–258.

    Article  Google Scholar 

  • Parikh, S., Grassi, V., Kumar, V., & Okamoto, J. (2004). Incorporating user inputs in motion planning for a smart wheelchair. In Proc. of the 2004 IEEE international conference on robotics and automation (pp. 2043–2048), New Orleans, USA. Berlin: Springer.

    Chapter  Google Scholar 

  • Parikh, S., Grassi, V., Kumar, V., & Okamoto, J. (2005). Usability study of a control framework for a intelligent wheelchair. In Proc. of the 2005 IEEE international conference robotics and automation (pp. 4745–4750). New Orleans, USA. Berlin: Springer.

    Chapter  Google Scholar 

  • Parker, M., Baker, P. S., & Allman, R. M. (2002). A life-space approach to functional assessment of mobility in the elderly. Journal of Gerontological Social Work, 35(4), 35–55.

    Article  Google Scholar 

  • Poncela, A., Pérez, E. J., Bandera, A., Urdiales, C., & Sandoval, F. (2002). Efficient integration of metric and topological maps for directed exploration of unknown environments. Robotics and Autonomous Systems, 41(1), 21–39.

    Article  Google Scholar 

  • Poncela, A., Urdiales, C., Fernández-Espejo, B., & Sandoval, F. (2008). Place characterization for navigation via behavior merging for an autonomous mobile robot. In Proc. of the IEEE Mediterranean conference 2008 (Melecon’2008). Ajaccio, France.

    Google Scholar 

  • Prassler, E., Scholz, J., & Fiorini, P. (1999). Navigating a robotic wheelchair in a railway station during rush hour. International Journal on Robotics Research, 18(7), 760–772.

    Article  Google Scholar 

  • Rao, R. S., Conn, K., Jung, S. H., Katupitiya, J., Kientz, T., Kumar, V., Ostrowski, J., Patel, S., & Taylor, C. J. (2002). Human robot interaction: applications to smart wheelchairs. In Proc. IEEE international conference on robotics and automation. Washington, USA.

    Google Scholar 

  • Rebsamen, B., Burdet, E., Cuntai, G., Chee Leong, T., Qiang, Ze., Ang, M., & Laugier, C. (2007). Controlling a wheelchair using a BCI with low information transfer rate. In Proceedings of the IEEE 10th international conference on rehabilitation robotics. Singapore: Noordwijk.

    Google Scholar 

  • Scerri, P., Pynadath, D., & Tambe, M. (2001). Adjustable autonomy in real-world multi-agent environments. In Int. conf. AGENTS 01 (pp. 300–307).

    Chapter  Google Scholar 

  • Shire, B. (1987). Microcomputer-based scanning interface for powered wheelchair. In Proc. annu. RESNA conf. (pp. 541–543). San Jose, California, USA.

  • Simpson, R., & Levine, S. (1997). Development and evaluation of voice control for a smart wheelchair. In Proc. annu. RESNA conf., (pp. 417–419). Washington, USA.

    Google Scholar 

  • Simpson, R., & Levine, S. P. (1998). NavChair: an assistive wheelchair navigation system with automatic adaptation (pp. 235–255). Berlin: Springer.

    Google Scholar 

  • Spier, E. (1997). From reactive behaviour to adaptive behaviour—motivational models for behaviour in animals and robots. Master Thesis.

  • Urdiales, C., Bandera, A., Pérez, E. J., Poncela, A., & Sandoval, F. (2003). Hierarchical planning in a mobile robot for map learning and navigation (pp. 2165–2188). Physica-Verlag: Heidelberg.

    Google Scholar 

  • Urdiales, C., Trazegnies, C., Bandera, A., & Sandoval, F. (2003). Corner detection based on adaptively filtered curvature function. Electronics Letters, 39(5), 426 –428.

    Article  Google Scholar 

  • Vázquez-Martin, R., Pérez, E., Urdiales, C., del Toro, J., & Sandoval, F. (2006). Hybrid navigation guidance for intelligent mobiles. IEEE ITS Society Newsletter, 4(8), 24–30.

    Google Scholar 

  • Volosyak, I., Kouzmitcheva, O., Ristic, D., & Gräser, A. (2005). Improvement of visual perceptual capabilities by feedback structures for robotic system friend. IEEE Transactions on Systems, Man and Cybernetics Part C, Applications and Reviews, 35(1), 66–74.

    Article  Google Scholar 

  • Webster, J., Cottam, G., Gouvier, W., Blanton, P., Beissel, G., & Wofford, J. (1988). Wheelchair obstacle course performance in right cerebral vascular accident victims. Journal of Clinical and Experimental Neuropsychology, 11, 295–310.

    Article  Google Scholar 

  • Weiner, E. (1989). Human factors of advanced technology (glass cockpit) transport aircraft (NASA TR 117528).

  • Yanco, H. A. (1998). Wheelesley: a robotic wheelchair system: indoor navigation and user interface, assistive technology and artificial intelligence. In Applications in robotics, user interfaces and natural language processing (pp. 256–268). Berlin: Springer.

    Google Scholar 

  • Yanco, H. A., Drury, J. L., & Scholtz, J. (2004). Beyond usability evaluation: analysis of human robot interaction at a major robotics competition. Journal of Human Computer Interaction, 19, 117–149.

    Article  Google Scholar 

  • Yesavage, J., Brink, T., Rose, T., Lum, O., Huang, V., Adey, M., & Leirer, V. (1983). Development and validation of a geriatric depression screening scale: a preliminary report. Journal of Psychiatric Research, 17, 37–49.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Urdiales.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urdiales, C., Peula, J.M., Fdez-Carmona, M. et al. A new multi-criteria optimization strategy for shared control in wheelchair assisted navigation. Auton Robot 30, 179–197 (2011). https://doi.org/10.1007/s10514-010-9211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-010-9211-2

Keywords

Navigation