Skip to main content
Log in

Vision-based exponential stabilization of mobile robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A new smooth closed loop time invariant control law is proposed for the exponential stabilization of mobile robots with nonholonomic motion constraints. The control scheme relies solely on visual information and includes an observer for the system state estimation by means of the essential matrix. The problem of model degeneracies due to short baseline is solved with the definition of a virtual target that provides a stable estimation of the essential matrix. The novelty of this paper lies in the new vision-based control scheme with state observer which is robust, ensuring convergence to the target location. The stability of the system under the proposed control law is demonstrated and experimental results show the goodness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aicardi, M., Casalino, G., Bicchi, A., & Balestrino, A. (1995). Closed loop steering of unicycle like vehicles via Lyapunov techniques. IEEE Robotics & Automation Magazine, 2(1), 27–35.

    Article  Google Scholar 

  • Argyros, A. A., Bekris, K. E., Orphanoudakis, S. C., & Kavraki, L. E. (2005). Robot homing by exploiting panoramic vision. Autonomous Robots, 19(1), 7–25.

    Article  Google Scholar 

  • Astolfi, A. (1999). Exponential stabilization of a wheeled mobile robot via discontinuous control. Journal of Dynamic Systems, Measurement, and Control, 121(1), 121–126.

    Article  Google Scholar 

  • Basri, R., Rivlin, E., & Shimshoni, I. (1999). Visual homing: Surfing on the epipoles. International Journal of Computer Vision, 33(2), 117–137.

    Article  Google Scholar 

  • Benhimane, S., & Malis, E. (2006). Homography-based 2D visual servoing. In Int. conf. on robotics and automation (pp. 2397–2402).

    Google Scholar 

  • Benhimane, S., Malis, E., Rives, P., & Azinheira, J. R. (2005). Vision-based control for car platooning using homography decomposition. In Int. conf. on robotics and automation (pp. 2173–2178), April 2005.

    Google Scholar 

  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. In R. W. Brockett, R. S. Millmann, & H. J. Sussmann (Eds.), Differential geometric control theory (pp. 181–191). Boston: Birkhauser.

    Google Scholar 

  • Canudas de Wit, C., & Sordalen, O. J. (1992). Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Transactions on Automatic Control, 37(11), 1791–1797.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaumette, F., & Hutchinson, S. (2006). Visual servo control, part I: Basic approaches. IEEE Robotics and Automation Magazine, 13(4), 82–90.

    Article  Google Scholar 

  • Chen, J., Dixon, W., Dawson, M., & McIntyre, M. (2006). Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Transactions on Robotics, 22(2), 406–415.

    Article  Google Scholar 

  • Chesi, G., & Hashimoto, K. (2004). A simple technique for improving camera displacement estimation in eye-in-hand visual servoing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(9), 1239–1242.

    Article  Google Scholar 

  • Chesi, G., & Hashimoto, K. (Eds.) (2010). Lecture notes in control and information sciences: Vol. 401. Visual servoing via advanced numerical methods. Berlin: Springer.

    MATH  Google Scholar 

  • Conticelli, F., Allotta, B., & Khosla, P. (1999). Image-based visual servoing of nonholonomic mobile robots. In IEEE Conference on Decision and Control (Vol. 4, pp. 3496–3501).

    Google Scholar 

  • Courbon, J., Mezouar, Y., & Martinet, P. (2008). Indoor navigation of a non-holonomic mobile robot using a visual memory. Autonomous Robots, 25(3), 253–266.

    Article  Google Scholar 

  • Fang, Y., Dixon, W. E., Dawson, D. M., & Chawda, P. (2005). Homography-based visual servo regulation of mobile robots. Trans. on Systems, Man, and Cybernetics, Part B, 35(5), 1041–1050.

    Article  Google Scholar 

  • Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.

    Article  MathSciNet  Google Scholar 

  • Franz, M. O., Schölkopf, B., Mallot, H. A., & Bülthoff, H. H. (1998). Learning view graphs for robot navigation. Autonomous Robots, 5(1), 111–125.

    Article  Google Scholar 

  • Hartley, R. I., & Zisserman, A. (2004). Multiple view geometry in computer vision (2nd edn.). Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Indiveri, G. (1999). Kinematic time-invariant control of a 2D nonholonomic vehicle. In IEEE conference on decision and control (Vol. 3, pp. 2112–2117).

    Google Scholar 

  • Khalil, H. K. (2001). Nonlinear systems, (3rd edn.). New York: Prentice Hall.

    Google Scholar 

  • López-Nicolás, G., Sagüés, C., Guerrero, J. J., Kragic, D., & Jensfelt, P. (2008). Switching visual control based on epipoles for mobile robots. Robotics and Autonomous Systems, 56(7), 592–603.

    Article  Google Scholar 

  • López-Nicolás, G., Sagüés, C., & Guerrero, J. J. (2009). Parking with the essential matrix without short baseline degeneracies. In IEEE international conference on robotics and automation (pp. 1098–1103), May 2009.

    Chapter  Google Scholar 

  • López-Nicolás, G., Gans, N. R., Bhattacharya, S., Guerrero, J. J., Sagüés, C., & Hutchinson, S. (2010). Homography-based control scheme for mobile robots with nonholonomic and field-of-view constraints. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 40(4), 1115–1127.

    Article  Google Scholar 

  • Lucas, B. D., & Kanade, T. (1981). An iterative image registration technique with an application to stereo vision. In Proc. of 7th international joint conference on artificial intelligence (IJCAI) (pp. 674–679).

    Google Scholar 

  • Luenberger, D. G. (1964). Observing the state of a linear system. In IEEE transactions military electronics (Vol. MIL-8, pp. 74–80).

    Google Scholar 

  • Malis, E., & Chaumette, F. (2000). 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement. International Journal of Computer Vision, 37(1), 79–97.

    Article  MATH  Google Scholar 

  • Nister, D. (2003). An efficient solution to the five-point relative pose problem. In IEEE computer society conference on computer vision and pattern recognition (Vol. 2, pp. 195–202), June 2003.

    Google Scholar 

  • Rives, P. (2000). Visual servoing based on epipolar geometry. In Int. conference on intelligent robots and systems (Vol. 1, pp. 602–607).

    Google Scholar 

  • Shi, J., & Tomasi, C. (1994). Good features to track. In IEEE computer society conference on computer vision and pattern recognition (pp. 593–600), June 1994.

    Google Scholar 

  • Thau, F. E. (1973). Observing the state of nonlinear dynamic systems. International Journal of Control, 17(3), 471–479.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. López-Nicolás.

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-Nicolás, G., Sagüés, C. Vision-based exponential stabilization of mobile robots. Auton Robot 30, 293–306 (2011). https://doi.org/10.1007/s10514-011-9220-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9220-9

Keywords

Navigation