Skip to main content
Log in

Myriapod-like ambulation of a segmented microrobot

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Segmented myriapod-like bodies may offer performance benefits over more common fixed body morphologies for ambulation. Here, the design of a segmented ambulatory microrobot with a flexible backbone is presented. A dynamic model describing the motion of the microrobot is used to determine body parameters. A three-segment microrobot was fabricated using the Smart Composite Microstructures process and piezoelectric bimorph actuators, and forward locomotion on a flat surface was demonstrated. The footprint of the 750 mg microrobot is 3.5 by 3.5 cm, and it has potential advantages over rigid body hexapedal microrobots in climbing, versatility, and stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, B., Shultz, J., & Jayne, B. (1995). Axial kinematics and muscle activity during terrestrial locomotion of the centipede Scolopendra heros. J. Exp. Biol., 198(5), 1185–1195.

    Google Scholar 

  • Baisch, A., & Wood, R. (2009). Design and fabrication of the Harvard ambulatory microrobot. In 14th int. symp. of robotics research.

    Google Scholar 

  • Birkmeyer, P., Peterson, K., & Fearing, R. (2009). DASH: a dynamic 16g hexapedal robot. In Proc. IEEE/RSJ international conference on intelligent robots and systems.

    Google Scholar 

  • Chen, V., & Tedrake, R. (2007). Passive dynamic walking with knees: a point foot model. Massachusetts Institute of Technology.

  • Edgecombe, G., & Giribet, G. (2006). Evolutionary biology of centipedes (Myriapoda: Chilopoda). The Annual Review of Entomology, 52, 151–170.

    Article  Google Scholar 

  • Full, R., & Tu, M. (1991). Mechanics of a rapid running insect: two-, four- and six-legged locomotion. Journal of Experimental Biology, 156, 215–231.

    Google Scholar 

  • Hoffman, K., & Wood, R. (2010). Towards a multi-segment ambulatory microrobot. In Proc. IEEE international conference on robotics and automation.

    Google Scholar 

  • Holmes, P., Full, R., Koditschek, D., & Guckenheimer, J. (2006). The dynamics of legged locomotion: models, analyses, and challenges. Dynamics, 48(2), 207–304.

    MATH  MathSciNet  Google Scholar 

  • Hoover, A., Steltz, E., & Fearing, R. (2008). RoACH: An autonomous 2.4 g crawling hexapod robot. In IEEE/RSJ international conference on intelligent robots and systems, pp. 26–33.

    Google Scholar 

  • Jimenez, B., & Ikspeert, A. (2007). Centipede robot locomotion.

  • Karpelson, M., Wei, G. Y., & Wood, R. (2009). Milligram-scale high-voltage power electronics for piezoelectric microrobots. In IEEE international conference on robotics and automation.

    Google Scholar 

  • Lobontiu, N., Goldfarb, M., & Garcia, E. (2001). A piezoelectric-driven inchworm locomotion device. Mechanism and Machine Theory, 36(4), 425–443.

    Article  MATH  Google Scholar 

  • Manton, S., & Harding, M. (1952). The evolution of Arthropodan locomotory mechanisms—Part 3. The locomotion of the Chilopoda and Pauropoda. Journal of the Linnean Society of London Zoology, 42(284), 118–167.

    Article  Google Scholar 

  • Matthey, L., Righetti, L., & Ijspeert, A. (2008). Experimental study of limit cycle and chaotic controllers for the locomotion of centipede robots. In IEEE/RSJ international conference on intelligent robots and systems, pp. 1860–1865.

    Google Scholar 

  • Nohara, B., & Nishizawa, T. (2005). An optimal working function based on the energetic cost for myriapod robot systems: how many legs are optimal for a centipede? Journal of Vibration and Control, 11(10), 1235.

    Article  MATH  Google Scholar 

  • Sahai, R., Avadhanula, S., Groff, R., Steltz, E., Wood, R., & Fearing, R. (2006). Towards a 3g crawling robot through the integration of microrobot technologies. In Proc. IEEE international conference on robotics and automation.

    Google Scholar 

  • Sfakiotakis, M., & Tsakiris, D. (2009). Undulatory and pedundulatory robotic locomotion via direct and retrograde body waves. In IEEE international conference on robotics and automation, pp. 3457–3463.

    Chapter  Google Scholar 

  • Steltz, E., Seeman, M., Avadhanula, S., & Fearing, R. (2006). Power electronics design choice for piezoelectric microrobots. In IEEE/RSJ international conference on intelligent robots and systems, pp. 1322–1328.

    Chapter  Google Scholar 

  • Wood, R., Steltz, E., & Fearing, R. (2005). Optimal energy density piezoelectric bending actuators. Sensors & Actuators: A Physical, 119(2), 476–488.

    Article  Google Scholar 

  • Wood, R., Avadhanula, S., Sahai, R., Steltz, E., & Fearing, R. (2008). Microrobot design using fiber reinforced composites. Journal of Mechanical Design, 130(5), 052,304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie L. Hoffman.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 7.17 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffman, K.L., Wood, R.J. Myriapod-like ambulation of a segmented microrobot. Auton Robot 31, 103–114 (2011). https://doi.org/10.1007/s10514-011-9233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9233-4

Keywords

Navigation