Skip to main content
Log in

Target tracking without line of sight using range from radio

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We propose a framework for utilizing fixed ultra-wideband ranging radio nodes to track a moving target radio node in an environment without guaranteed line of sight or accurate odometry. For the case where the fixed nodes’ locations are known, we derive a Bayesian room-level tracking method that takes advantage of the structural characteristics of the environment to ensure robustness to noise. For the case of unknown fixed node locations, we present a two-step approach that first reconstructs the target node’s path using Gaussian Process Latent Variable models (GPLVMs) and then uses that path to determine the locations of the fixed nodes. We present experiments verifying our algorithm in an office environment, and we compare our results to those generated by online and batch SLAM methods, as well as odometry mapping. Our algorithm is successful at tracking a moving target node without odometry and mapping the locations of fixed nodes using radio ranging data that are both noisy and intermittent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Djugash, J., Singh, S., Kantor, G., & Zhang, W. (2006). Range-only SLAM for robots operating cooperatively with sensor networks. In Proc. IEEE int. conf. robotics and automation.

    Google Scholar 

  • Djugash, J., Singh, S., & Grocholsky, B. (2008). Decentralized mapping of robot-aided sensor networks. In Proc. IEEE int. conf. robotics and automation.

    Google Scholar 

  • Ferris, B., Hahnel, D., & Fox, D. (2006). Gaussian processes for signal strength-based location estimation. In Proc. robotics: science and systems conf.

    Google Scholar 

  • Ferris, B., Fox, D., & Lawrence, N. D. (2007). WiFi-SLAM using Gaussian process latent variable models. In Proc. int. joint conf. artificial intelligence.

    Google Scholar 

  • Gezici, S., Thian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., & Sahinoglu, Z. (2005). Localization via ultra-wideband radios. IEEE Signal Processing Magazine, 22(4), 70–84.

    Article  Google Scholar 

  • Grisetti, G., Kuemmerle, R., Stachniss, C., Frese, U., & Hertzberg, C. (2010). Hierarchical optimization on manifolds for online 2D and 3D mapping. In Proc. IEEE int. conf. robotics and automation.

    Google Scholar 

  • Gustafsson, F., & Gunnarsson, F. (2005). Mobile positioning using wireless networks. IEEE Signal Processing Magazine, 22(4), 41–53.

    Article  Google Scholar 

  • Hollinger, G., Djugash, J., & Singh, S. (2008). Tracking a moving target in cluttered environments with ranging radios. In Proc. IEEE int. conf. robotics and automation.

    Google Scholar 

  • Hollinger, G., Singh, S., Djugash, J., & Kehagias, A. (2009). Efficient multi-robot search for a moving target. The International Journal of Robotics Research, 28(2), 201–219.

    Article  Google Scholar 

  • Hu, L., & Evans, D. (2004). Localization for mobile sensor networks. In Proc. int. conf. mobile computing and networking.

    Google Scholar 

  • Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.

    Article  Google Scholar 

  • Kehagias, A., Djugash, J., & Singh, S. (2006). Range-only SLAM with interpolated range data. Technical Report CMU-RI-TR-06-26, Robotics Institute, Carnegie Mellon Univ.

  • Ko, J., & Fox, D. (2011). Learning GP-Bayes filters via Gaussian process latent variable models. Autonomous Robots, 30(1), 3–23.

    Article  Google Scholar 

  • Kuhn, M., Zhang, C., Mahfouz, M., & Fathy, A. E. (2009). Real-time UWB indoor positioning system with millimeter 3-D dynamic accuracy. In IEEE antennas and propagation society int. symp.

    Google Scholar 

  • Kumar, V., Rus, D., & Singh, S. (2004). Robot and sensor networks for first responders. IEEE Pervasive Computing, 3(4), 24–33.

    Article  Google Scholar 

  • Lawrence, N. D. (2005). Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6, 1783–1816.

    MATH  MathSciNet  Google Scholar 

  • Liao, E., Hollinger, G., Djugash, J., & Singh, S. (2006). Preliminary results in tracking mobile targets using range sensors from multiple robots. In Proc. int. symp. distributed autonomous robotic systems.

    Google Scholar 

  • Mullane, J., Adams, M. D., & Wijesoma, W. S. (2009). Robotic mapping using measurement likelihood filtering. The International Journal of Robotics Research, 28(2), 172–190.

    Article  Google Scholar 

  • Multispectral Solutions, Inc. (2008). Company website. http://www.multispectral.com/.

  • Nicoli, M., Morelli, C., & Rampa, V. (2008). A jump Markov particle filter for localization of moving terminals in multipath indoor scenarios. IEEE Transactions on Signal Processing, 56(8), 3801–3809.

    Article  MathSciNet  Google Scholar 

  • Olson, E., Leonard, J. J., & Teller, S. (2006). Robust range-only beacon localization. IEEE Journal of Oceanic Engineering, 31(4), 949–958.

    Article  Google Scholar 

  • Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2005). Mobile-assisted localization in wireless sensor networks. In Proc. IEEE INFOCOM.

    Google Scholar 

  • Schroeder, J., Galler, S., & Kyamakya, K. (2005). A low-cost experimental ultra-wideband positioning system. In IEEE int. conf. ultra-wideband.

    Google Scholar 

  • Schwaighofer, A., Grigoras, M., Tresp, V., & Hoffmann, C. (2003). GPPS: a Gaussian process positioning system for cellular networks. In Proc. 17th conf. on neural information processing systems.

    Google Scholar 

  • Snelson, E. (2007). Flexible and efficient Gaussian process models for machine learning. Ph.D. Thesis, Gatsby Computational Neuroscience Unit, University College London, University of London.

  • Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323.

    Article  Google Scholar 

  • Thrun, S., Burgard, W., & Fox, D. (2005). Probabilistic robotics. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Tsai, Y.-L., Tu, T.-T., Bae, H., & Chou, P. H. (2010). EcoIMU: a dual triaxial-accelerometer inertial measurement unit for wearable applications. In Int. conf. body sensor networks.

    Google Scholar 

  • Wang, J. M., Fleet, D. J., & Hertzmann, A. (2007). Gaussian process dynamical models for human motion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(2), 283–298.

    Article  Google Scholar 

  • Zhou, J., & Shi, J. (2009). RFID localization algorithms and applications—a review. Journal of Intelligent Manufacturing, 20, 695–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey A. Hollinger.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

MP4 7.07 MB

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hollinger, G.A., Djugash, J. & Singh, S. Target tracking without line of sight using range from radio. Auton Robot 32, 1–14 (2012). https://doi.org/10.1007/s10514-011-9239-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9239-y

Keywords

Navigation