Skip to main content
Log in

Robust grasping under object pose uncertainty

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a decision-theoretic approach to problems that require accurate placement of a robot relative to an object of known shape, such as grasping for assembly or tool use. The decision process is applied to a robot hand with tactile sensors, to localize the object on a table and ultimately achieve a target placement by selecting among a parameterized set of grasping and information-gathering trajectories. The process is demonstrated in simulation and on a real robot. This work has been previously presented in Hsiao et al. (Workshop on Algorithmic Foundations of Robotics (WAFR), 2008; Robotics Science and Systems (RSS), 2010) and Hsiao (Relatively robust grasping, Ph.D. thesis, Massachusetts Institute of Technology, 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akella, S., & Mason, M. T. (1999). Using partial sensor information to orient parts. The International Journal of Robotics Research, 18(10), 963–997.

    Article  Google Scholar 

  • Allen, P. K., & Bajcsy, R. (1985). Object recognition using vision and touch. In Intl. joint conf. on artificial intelligence (IJCAI).

    Google Scholar 

  • Allen, P. K., & Michelman, P. (1990). Acquisition and interpretation of 3-D sensor data from touch. IEEE Transactions on Robotics and Automation, 6(4), 397–404.

    Article  Google Scholar 

  • Alterovitz, R., Simeon, T., & Goldberg, K. (2007). The stochastic motion roadmap: a sampling framework for planning with markov motion uncertainty. In Robotics science and systems (RSS).

    Google Scholar 

  • Baum, C. W., & Veeravalli, V. V. (1994). A sequential procedure for multihypothesis testing. IEEE on Information Theory, 40(6). doi:10.1109/18.340472.

  • Burns, B., & Brock, O. (2007). Sampling-based motion planning with sensing uncertainty. In IEEE intl. conf. on robotics and automation (ICRA).

    Google Scholar 

  • Cameron, A., & Durrant-Whyte, H. F. (1990). A Bayesian approach to optimal sensor placement. The International Journal of Robotics Research, 9(5), 70–88.

    Article  Google Scholar 

  • Censi, A., Calisi, D., Luca, A. D., & Oriolo, G. (2008). A bayesian framework for optimal motion planning with uncertainty. In IEEE intl. conf. on robotics and automation (ICRA) (pp. 1798–1805).

    Chapter  Google Scholar 

  • DeGroot, M. H. (1970). Optimal statistical decisizons. New York: McGraw-Hill.

    Google Scholar 

  • Diankov, R., & Kuffner, J. (2008). Openrave: a planning architecture for autonomous robotics (Tech. Rep. CMU-RI-TR-08-34). Robotics Institute, CMU.

  • Ellis, R. E. (1992). Planning tactile recognition paths in two and three dimensions. The International Journal of Robotics Research, 11(2), 87–111.

    Article  Google Scholar 

  • Erdmann, M. (1998). Shape recovery from passive locally dense tactile data. In Workshop on algorithmic foundations of robotics (WAFR).

    Google Scholar 

  • Erickson, L. H., Knuth, J., O’Kane, J. M., & Lavalle, S. M. (2008). Probabilistic localization with a blind robot. In IEEE intl. conf. on robotics and automation (ICRA).

    Google Scholar 

  • Gadeyne, K., Lefebvre, T., & Bruyninckx, H. (2005). Bayesian hybrid model-state estimation applied to simultaneous contact formation recognition and geometrical parameter estimation. The International Journal of Robotics Research, 24, 615.

    Article  Google Scholar 

  • Gaston, P. C., & Lozano-Perez, T. (1984). Tactile recognition and localization using object models: The case of polyhedra on a plane. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 257–265.

    Article  Google Scholar 

  • Gonzalez, J. P., & Stentz, A. (2005). Planning with uncertainty in position an optimal and efficient planner. In IEEE/RSJ intl. conf. on intelligent robots and systems (IROS) (pp. 2435–2442).

    Google Scholar 

  • Hsiao, K. (2009). Relatively robust grasping. Ph.D. thesis, Massachusetts Institute of Technology.

  • Hsiao, K., Kaelbling, L. P., & Lozano-Perez, T. (2007). Grasping POMDPs. In IEEE intl. conf. on robotics and automation (ICRA).

    Google Scholar 

  • Hsiao, K., Kaelbling, L. P., & Lozano-Perez, T. (2008). Robust belief-based execution of manipulation programs. In Workshop on algorithmic foundations of robotics (WAFR).

    Google Scholar 

  • Hsiao, K., Kaelbling, L. P., & Lozano-Perez, T. (2010). Task-driven tactile exploration. In Robotics science and systems (RSS).

    Google Scholar 

  • Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in partially observable stochastic domains. Artifical Intelligence, 101. doi:10.1016/S0004-3702(98)00023-X.

  • Krause, A., & Guestrin, C. (2007). Near-optimal observation selection using submodular functions. In Conf. on artificial intelligence (AAAI).

    Google Scholar 

  • Latombe, J. (1991). Robot motion planning. Dordrecht: Kluwer Academic.

    Book  Google Scholar 

  • LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lozano-Perez, T., Mason, M. T., & Taylor, R. H. (1984). Automatic synthesis of fine-motion strategies for robots. International Journal of Robotics Research (IJRR), 3(1). doi:10.1177/027836498400300101.

  • Melchior, N. A., & Simmons, R. (2007). Particle rrt for path planning with uncertainty. In IEEE intl. conf. on robotics and automation (ICRA).

    Google Scholar 

  • Okada, T., & Tsuchiya, S. (1977). Object recognition by grasping. Pattern Recognition, 9(3), 111–119.

    Article  Google Scholar 

  • Okamura, A. M., & Cutkosky, M. R. (2001). Feature detection for haptic exploration with robotic fingers. The International Journal of Robotics Research, 20(12), 925–938.

    Article  Google Scholar 

  • Petrovskaya, A., & Ng, A. Y. (2007). Probabilistic mobile manipulation in dynamic environments, with application to opening doors. In Intl. joint conf. on artificial intelligence (IJCAI).

    Google Scholar 

  • Prentice, S., & Roy, N. (2007). The belief roadmap: efficient planning in linear POMDPs by factoring the covariance. In Intl. symposium on robotics research (ISRR).

    Google Scholar 

  • Skiena, S. (1989). Problems in geometric probing. Algorithmica, 4(4), 599–605.

    Article  MathSciNet  Google Scholar 

  • Taylor, R. H., Mason, M. T., & Goldberg, K. Y. (1988). Sensor-based manipulation planning as a game with nature. In Intl. symposium on robotics research (ISRR).

    Google Scholar 

  • Wald, A. (1945). Sequential tests of statistical hypotheses. The Annals of Mathematical Statistics, 16(2). doi:10.1214/aoms/1177731118.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaijen Hsiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsiao, K., Kaelbling, L.P. & Lozano-Pérez, T. Robust grasping under object pose uncertainty. Auton Robot 31, 253–268 (2011). https://doi.org/10.1007/s10514-011-9243-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9243-2

Keywords

Navigation