Skip to main content
Log in

Interactive imitation learning of object movement skills

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we present a new robot control and learning system that allows a humanoid robot to extend its movement repertoire by learning from a human tutor. The focus is learning and imitating motor skills to move and position objects. We concentrate on two major aspects. First, the presented teaching and imitation scenario is fully interactive. A human tutor can teach the robot which is in turn able to integrate newly learned skills into different movement sequences online. Second, we combine a number of novel concepts to enhance the flexibility and generalization capabilities of the system. Generalization to new tasks is obtained by decoupling the learned movements from the robot’s embodiment using a task space representation. It is chosen automatically from a commonly used task space pool. The movement descriptions are further decoupled from specific object instances by formulating them with respect to so-called linked objects. They act as references and can interactively be bound to real objects. When executing a learned task, a flexible kinematic description allows to change the robot’s body schema online and thereby apply the learned movement relative to different body parts or new objects. An efficient optimization scheme adapts movements to such situations performing online obstacle and self-collision avoidance. Finally, all described processes are combined within a comprehensive architecture. To demonstrate the generalization capabilities we show experiments where the robot performs a movement bimanually in different environments, although the task was demonstrated by the tutor only one-handed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acosta-Calderon, C. A., & Hu, H. (2005). Robot imitation: body schema and body percept. Applied Bionics and Biomechanics, 2, 131–148.

    Article  Google Scholar 

  • Asfour, T., Gyarfas, F., Azad, P., & Dillmann, R. (2006). Imitation learning of dual-arm manipulation tasks in humanoid robots. In International conference on humanoid robots, 2006 6th IEEE-RAS (pp. 40–47).

    Chapter  Google Scholar 

  • Azad, P., Asfour, T., & Dillmann, R. (2007). Toward an unified representation for imitation of human motion on humanoids. In Proceedings 2007 IEEE international conference on robotics and automation, IEEE, April (pp. 2558–2563).

    Chapter  Google Scholar 

  • Beetz, M., Jain, D., Mösenlechner, L., & Tenorth, M. (2010). Towards performing everyday manipulation activities. Robotics and Autonomous Systems, 58(9), 1085–1095.

    Article  Google Scholar 

  • Bohg, J., Barck-Holst, C., Huebner, K., Ralph, M., Rasolzadeh, B., Song, D., & Kragic, D. (2009). Towards grasp-oriented visual perception for humanoid robots. International Journal of Humanoid Robotics, 6(3), 387–434.

    Article  Google Scholar 

  • Bolder, B., Dunn, M., Gienger, M., Janssen, H., Sugiura, H., & Goerick, C. (2007). Visually guided whole body interaction. In IEEE international conference on robotics and automation (ICRA) (pp. 3054–3061).

    Google Scholar 

  • Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523–547.

    Article  Google Scholar 

  • Burghart, C., Mikut, R., Stiefelhagen, R., Asfour, T., Holzapfel, H., Steinhaus, P., & Dillmann, R. (2005). A cognitive architecture for a humanoid robot: a first approach. In Proceedings of 2005 5th IEEE-RAS international conference on humanoid robots (pp. 357–362).

    Chapter  Google Scholar 

  • Calinon, S. (2009). Robot programming by demonstration: a probabilistic approach. Lausanne: EPFL Press.

    Google Scholar 

  • Calinon, S., & Billard, A. (2008). A framework integrating statistical and social cues to teach a humanoid robot new skills. In Proc. IEEE intl conf. on robotics and automation (ICRA), workshop on social interaction with intelligent indoor robots.

    Google Scholar 

  • Calinon, S., Guenter, F., & Billard, A. G. (2007). On learning, representing, and generalizing a task in a humanoid robot. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics: A Publication of the IEEE Systems, Man, and Cybernetics Society, 37(2), 286–298.

    Article  Google Scholar 

  • Einecke, N., Mühlig, M., Schmüdderich, J., & Gienger, M. (2011). “Bring it to me”—Generation of behavior-relevant scene elements for interactive robot scenarios. In 2011 IEEE international conference on robotics and automation (ICRA).

    Google Scholar 

  • Eppner, C., Sturm, J., Bennewitz, M., Stachniss, C., & Burgard, W. (2009). Imitation learning with generalized task descriptions. In Proceedings of the IEEE/RSJ international conference on robotics and automation (ICRA), Kobe, Japan.

    Google Scholar 

  • Gienger, M., Janssen, H., & Goerick, C. (2005). Task-oriented whole body motion for humanoid robots. In 2005 5th IEEE-RAS international conference on humanoid robots (pp. 238–244).

    Chapter  Google Scholar 

  • Gienger, M., Mühlig, M., & Steil, J. J. (2010a). Imitating object movement skills with robots—a task-level approach exploiting generalization and invariance. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010).

    Google Scholar 

  • Gienger, M., Toussaint, M., & Christian, G. (2010b). Motion planning for humanoid robots. In K. Harada, E. Yoshida, & K. Yokoi (Eds.), Whole-body motion planning—building blocks for intelligent systems. Berlin: Springer. Chap. 3.

    Google Scholar 

  • Hecht, F., Azad, P., & Dillmann, R. (2009). Markerless human motion tracking with a flexible model and appearance learning. In IEEE international conference on robotics and automation (ICRA).

    Google Scholar 

  • Heracles, M., Bolder, B., & Goerick, C. (2009). Fast detection of arbitrary planar surfaces from unreliable 3D data. In International conference on intelligent robots and systems (IROS), IEEE/RSJ.

    Google Scholar 

  • Hersch, M., Sauser, E., & Billard, A. (2008). Online learning of the body schema. International Journal of Humanoid Robotics, 5(2), 161–181.

    Article  Google Scholar 

  • Igel, C., & Hüsken, M. (2003). Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing, 50(C), 105–123.

    Article  MATH  Google Scholar 

  • Ijspeert, A., Nakanishi, J., & Schaal, S. (2003). Learning attractor landscapes for learning motor primitives. In Advances in neural information processing systems (pp. 1547–1554).

    Google Scholar 

  • Inamura, T., Toshima, I., Tanie, H., & Nakamura, Y. (2004). Embodied symbol emergence based on mimesis theory. The International Journal of Robotics Research, 23, 363–377.

    Article  Google Scholar 

  • Itti, L., Koch, C., & Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259.

    Article  Google Scholar 

  • Khansari-Zadeh, S., & Billard, A. G. (2010). Imitation learning of globally stable non-linear point-to-point robot motions using nonlinear programming. In Proceeding of the 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2676–2683).

    Google Scholar 

  • Kober, J., & Peters, J. (2009). Learning motor primitives for robotics. In 2009 IEEE international conference on robotics and automation, IEEE (pp. 2112–2118).

    Chapter  Google Scholar 

  • Kormushev, P., Calinon, S., & Caldwell, D. G. (2010). Robot motor skill coordination with EM-based reinforcement learning. In 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 3232–3237).

    Chapter  Google Scholar 

  • Liégeois, A. (1977). Automatic supervisory control of configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 7(12), 861–871.

    Google Scholar 

  • Lopes, M., & Santos-Victor, J. (2005). Visual learning by imitation with motor representations. IEEE Transactions on Systems, Man, and Cybernetics. Part B, 35(3), 438–449.

    Article  Google Scholar 

  • Lopes, M., Melo, F. S., & Montesano, L. (2007). Affordance-based imitation learning in robots. In Proceedings of the 2007 IEEE/RSJ international conference on intelligent robots and systems.

    Google Scholar 

  • Matarić, M. J., & Pomplun, M. (1998). Fixation behavior in observation and imitation of human movement. Cognitive Brain Research, 7, 191–202.

    Article  Google Scholar 

  • McGuire, P., Fritsch, J., Steil, J. J., Röthling, F., Fink, G. A., Wachsmuth, S., Sagerer, G., & Ritter, H. (2002). Multi-modal human-machine communication for instructing robot grasping tasks. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1082–1088).

    Google Scholar 

  • Mühlig, M., Gienger, M., Hellbach, S., Steil, J. J., & Goerick, C. (2009a). Task-level imitation learning using variance-based movement optimization. In IEEE international conference on robotics and automation (ICRA).

    Google Scholar 

  • Mühlig, M., Gienger, M., Steil, J. J., & Goerick, C. (2009b). Automatic selection of task spaces for imitation learning. In 2009 IEEE/RSJ international conference on intelligent robots and systems.

    Google Scholar 

  • Mühlig, M., Gienger, M., & Steil, J. J. (2010). Human-robot interaction for learning and adaptation of object movements. In 2010 IEEE/RSJ international conference on intelligent robots and systems (IROS 2010).

    Google Scholar 

  • Nabeshima, C., Kuniyoshi, Y., & Lungarella, M. (2006). Adaptive body schema for robotic tool-use. Advanced Robotics, 20(10), 1105–1126.

    Article  Google Scholar 

  • Nagai, Y., Muhl, C., & Rohlfing, K. J. (2008). Toward designing a robot that learns actions from parental demonstrations. In 2008 IEEE international conference on robotics and automation, Pasadena, CA, USA (pp. 3545–3550).

    Chapter  Google Scholar 

  • Nakamura, Y. (1991). Advanced robotics: redundancy and optimization. Reading: Addison-Wesley.

    Google Scholar 

  • Nicolescu, M., & Matarić, M. J. (2003). Natural methods for robot task learning: instructive demonstrations, generalization and practice. In Proceedings of the second international joint conference on autonomous agents and multi-agent systems (pp. 241–248). New York: ACM.

    Chapter  Google Scholar 

  • Nicolescu, M., & Matarić, M. J. (2006). Task learning through imitation and human-robot interaction. In Models and mechanisms of imitation and social learning in robots, humans and animals: behavioural, social and communicative dimensions (pp. 407–424).

    Google Scholar 

  • Orabona, F., Metta, G., & Sandini, G. (2007). A proto-object based visual attention model. In Attention in cognitive systems theories and systems from an interdisciplinary viewpoint (pp. 198–215).

    Google Scholar 

  • Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In IEEE international conference on robotics and automation.

    Google Scholar 

  • Sakoe, H. (1978). Dynamic programming algorithm optimization for spoken word recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing, 26, 43–49.

    Article  MATH  Google Scholar 

  • Schaal, S., Ijspeert, A., & Billard, A. G. (2003). Computational approaches to motor learning by imitation. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 358(1431), 537–547.

    Article  Google Scholar 

  • Schmuedderich, J. (2010). Multimodal learning of grounded concepts in embodied systems. Berichte aus der Robotik. Aachen: Shaker.

    Google Scholar 

  • Scholl, B. J. (2001). Objects and attention: the state of the art. Cognition, 80(1–2), 1–46.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Steil, J. J., Roethling, F., Haschke, R., & Ritter, H. (2004). Situated robot learning for multi-modal instruction and imitation of grasping. Robotics and Autonomous Systems Special Issue, 47, 129–141.

    Article  Google Scholar 

  • Stoytchev, A. (2003). Computational model for an extendable robot body schema. Tech. Rep. GIT-CC-03-44, Georgia Institute of Technology, College of Computing.

  • Sugiura, K., Iwahashi, N., Kashioka, H., & Nakamura, S. (2010). Statistical imitation learning in sequential object manipulation tasks. In Advances in robot manipulators (pp. 589–606).

    Google Scholar 

  • Toussaint, M., Gienger, M., & Goerick, C. (2007). Optimization of sequential attractor-based movement for compact behaviour generation. In 7th IEEE-RAS international conference on humanoid robots (Humanoids 2007).

    Google Scholar 

  • Toussaint, M., Plath, N., Lang, T., & Jetchev, N. (2010). Integrated motor control, planning, grasping and high-level reasoning in a blocks world using probabilistic inference. In Robotics and automation (ICRA), 2010 IEEE international conference on, IEEE (pp. 385–391).

    Chapter  Google Scholar 

  • Walther, D., & Koch, C. (2006). Modeling attention to salient proto-objects. Neural Networks, 19(9), 1395–1407.

    Article  MATH  Google Scholar 

  • Wischnewski, M., Belardinelli, A., Schneider, W. X., & Steil, J. J. (2010). Where to look next? Combining static and dynamic proto-objects in a TVA-based model of visual attention. In Cognitive computation (pp. 1–18).

    Google Scholar 

  • Yamashita, Y., & Tani, J. (2008). Emergence of functional hierarchy in a multiple timescale neural network model: a humanoid robot experiment. PLoS computational biology, 4(11).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Mühlig.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 32.2 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mühlig, M., Gienger, M. & Steil, J.J. Interactive imitation learning of object movement skills. Auton Robot 32, 97–114 (2012). https://doi.org/10.1007/s10514-011-9261-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-011-9261-0

Keywords

Navigation