Skip to main content
Log in

Trajectory design and control for aggressive formation flight with quadrotors

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this work we consider the problem of controlling a team of micro-aerial vehicles moving quickly through a three-dimensional environment while maintaining a tight formation. The formation is specified by shape vectors which prescribe the relative separations and bearings between the robots. To maintain the desired shape, each robot plans its trajectory independently based on its local information of other robot plans and estimates of states of other robots in the team. We explore the interaction between nonlinear decentralized controllers, the fourth-order dynamics of the individual robots, time delays in the network, and the effects of communication failures on system performance. Simulations as well as an experimental evaluation of our approach on a team of quadrotors suggests that suitable performance is maintained as the formation motions become increasingly aggressive and as communication degrades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Beard, R. W., Lawton, J., & Hadaegh, F. Y. (2001). A coordination architecture for spacecraft formation control. IEEE Transactions on Control Systems Technology, 9(6), 777–790.

    Article  Google Scholar 

  • Desai, J. P., Ostrowski, J. P., & Kumar, V. (2001). Modeling and control of formations of nonholonomic mobile robots. IEEE Transactions on Robotics, 17(6), 905–908.

    Article  Google Scholar 

  • Egerstedt, M., & Hu, X. (2001). Formation constrained multi-agent control. IEEE Transactions on Robotics and Automation, 17(6), 947–951.

    Article  Google Scholar 

  • Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control, 49(9), 1465–1476.

    Article  MathSciNet  Google Scholar 

  • Franchi, A., Giordano, P., Secchi, C., Son, H., & Bülthoff, H. (2011). A passivity-based decentralized approach for the bilateral teleoperation of a group of uavs with switching topology. In Proc. IEEE intl conf. on robotics & automation.

    Google Scholar 

  • Gu, Y., Seanor, B., Campa, G., Napolitano, M. R., Rowe, L., Gururajan, S., & Wan, S. (2006). Design and flight testing evaluation of formation control laws. IEEE Transactions on Control Systems Technology, 14(6), 1105–1112.

    Article  Google Scholar 

  • Jadbabaie, A., Lin, J., & Morse, A. S. (2003). Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Transactions on Automatic Control, 48(6), 988–1001.

    Article  MathSciNet  Google Scholar 

  • Jadbabaie, A., Yu, J., & Hauser, J. (2001). Unconstrained receding-horizon control of nonlinear systems. IEEE Transactions on Automatic Control, 46(5), 776–783.

    Article  MathSciNet  MATH  Google Scholar 

  • Keviczky, T., & Johansson, K. (2008). A study on distributed model predictive consensus. arXiv:0802.4450.

  • Latouche, G., & Ramaswami, V. (1999). Introduction to matrix analytic methods in stochastic modeling. Philadelphia: ASA-SIAM.

    Book  MATH  Google Scholar 

  • Lee, T. (2011). Geometric tracking control of the attitude dynamics of a rigid body on SO(3). In Proc. of the Amer. control conf., San Francisco, CA.

    Google Scholar 

  • Lee, T., Leok, M., & McClamroch, N. H. (2010). Geometric tracking control of a quadrotor UAV on SE(3). In Proc. of the IEEE conf. on decision and control, Atlanta, GA.

    Google Scholar 

  • Mellinger, D., & Kumar, V. (2011). Minimum snap trajectory generation and control for quadrotors. In Proc. of the IEEE intl. conf. on robot. and autom., Shanghai, China.

    Google Scholar 

  • Mellinger, D., Michael, N., & Kumar, V. (2010). Trajectory generation and control for precise aggressive maneuvers with quadrotors. In Proc. of the intl. sym. on exp. robot., Delhi, India.

    Google Scholar 

  • Mesbahi, M. (2005). On state-dependent dynamic graphs and their controllability properties. IEEE Transactions on Automatic Control, 50(3), 387–392.

    Article  MathSciNet  Google Scholar 

  • Michael, N., Mellinger, D., Lindsey, Q., & Kumar, V. (2010). The GRASP multiple micro UAV testbed. IEEE Robotics & Automation Magazine, 17(3), 56–65.

    Article  Google Scholar 

  • Nieuwstadt, M. J. V., & Murray, R. M. (1998). Real-time trajectory generation for differentially flat systems. International Journal of Robust and Nonlinear Control, 8(11), 995–1020.

    Article  MathSciNet  MATH  Google Scholar 

  • Ogren, P., Fiorelli, E., & Leonard, N. (2002). Formations with a mission: stable coordination of vehicle group maneuvers. In Proc. of intl. sym. on mathematical theory networks and syst., Notre Dame, IN.

    Google Scholar 

  • Olfati-Saber, R., & Murray, R. M. (2002). Distributed cooperative control of multiple vehicle formations using structural potential functions. In Proc. of the IFAC world congress, Barcelona, Spain.

    Google Scholar 

  • Olfati-Saber, R., & Murray, R. M. (2004). Consensus problems in networks of agents with switching topology and time-delays. IEEE Transactions on Automatic Control, 49(9), 1520–1533.

    Article  MathSciNet  Google Scholar 

  • Shim, D., Kim, H., & Sastry, S. (2003). Decentralized nonlinear model predictive control of multiple flying robots. In Decision and control, 2003. Proceedings. 42nd IEEE conference on (Vol. 4, pp. 3621–3626). New York: IEEE.

    Google Scholar 

  • Tabuada, P., Pappas, G. J., & Lima, P. (2001). Feasible formations of multi-agent systems. In Proc. of the Amer. control conf., Arlington, VA (pp. 56–61).

    Google Scholar 

  • Tanner, H., Pappas, G. J., & Kumar, V. (2002). Input-to-state stability on formation graphs. In Proc. of the IEEE intl. conf. on robot. and autom., Las Vegas, NV (pp. 2439–2444).

    Google Scholar 

  • Turpin, M., Michael, N., & Kumar, V. (2011). Trajectory design and control for aggressive formation flight with quadrotors. In Proc. of the intl. sym. of robotics research, Flagstaff, AZ.

    Google Scholar 

  • Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., & Shochet, O. (1995). Novel type of phase transition in a system of self-driven particles. Physical Review Letters, 75(6), 1226–1229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Turpin.

Appendix: Multimedia supplement

Appendix: Multimedia supplement

The multimedia extension to this article is available at http://mrsl.grasp.upenn.edu/mturpin/AURO2011.mov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turpin, M., Michael, N. & Kumar, V. Trajectory design and control for aggressive formation flight with quadrotors. Auton Robot 33, 143–156 (2012). https://doi.org/10.1007/s10514-012-9279-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9279-y

Keywords

Navigation