Skip to main content
Log in

Walking in the resonance with the COMAN robot with trajectories based on human kinematic motion primitives (kMPs)

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Research in humanoid robotics aims to develop autonomous systems that are able to assist humans in the performance of everyday tasks. Part of the robotics community claims that the best solution to guarantee the maximum adaptability of robots to the majority of human tasks is mimicry. Based on this premise both the structure of the human body and human behavior have been the focus of studies, with the aim of imitating and reproducing on robotic systems the results of millennia of human evolution. The research presented in this paper aims (i) at transferring the features of human locomotion to the COmpliant huMANoid (COMAN) robot, by means of kinematic motion primitives (kMPs) extracted from human subjects, and (ii) at improving the energetic performance of the walk of COMAN by exploiting its intrinsic compliance: it will be shown that, when the robot is walking at a gait frequency that is close to one of the main resonance frequencies of the mechanism, the springs contribute to tracking the human-like kMPs-based trajectories imposed, providing at the right time about 15 % of the energy required for locomotion, and that was previously stored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Brooks, R., Breazeal, C., Marjanovic, M., Scassellati, B., & Williamson, M. (1998). The cog project: Building a humanoid robot. In C. Nehaniv (Ed.), Computation for metaphors, analogy and Agents. Lecture notes in artificial intelligence (Vol. 1562, pp. 52–87). Berlin: Springer.

    Chapter  Google Scholar 

  • Collins, S., Ruina, A., Tedrake, R., & Wisse, M. (2005). Efficient bipedal robots based on passive-dynamic walkers. Science, 307(5712), 1082–1085.

    Article  Google Scholar 

  • D’Avella, A., Saltiel, P., & Bizzi, E. (2003). Combinations of muscle synergies in the construction of a natural motor behavior. Nature Neuroscience, 6(3), 300–308.

    Article  Google Scholar 

  • Degallier, S., Righetti, L., Natale, L., Nori, F., Metta, G., & Ijspeert, A. (2008). A modular bio-inspired architecture for movement generation for the infant-like robot iCub. In 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 795–800), Scottsdale, AZ, USA.

  • Dégallier Rochat, S., & Ijspeert, A. (2010). Modeling discrete and rhythmic movements through motor primitives: A review. Biological Cybernetics, 103(4), 319–338.

    Article  Google Scholar 

  • Dégallier Rochat, S., Righetti, L., Gay, S., & Ijspeert, A. (2011). Towards simple control for complex, autonomous robotic applications: Combining discrete and rhythmic motor primitives. Autonomous Robots, 31(2), 155–181.

    Article  Google Scholar 

  • Edsinger-Gonzales, A., & Weber, J. (2004). Domo: A force sensing humanoid robot for manipulation research. In IEEE-RAS International Conference on Humanoid Robots (pp. 1–19), Santa Monica, CA, USA.

  • Fujimoto, Y. (2004). Trajectory generation of biped running robot with minimum energy consumption. In IEEE International Conference on Robotics and Automation (pp. 3803–3808), Barcelona, Spain.

  • Grebenstein, M., et al. (2011). The dlr hand arm system. In IEEE International Conference on Robotics and Automation (pp. 3175–3182), Shanghai, China.

  • Hollands, K., Wing, A. M., & Daffertshofer, A. (2007). Principal component analysis of contemporary dance kinematics. In 3rd IEEE EMBSS UK & RI Postgraduate Conference in Biomedical Engineering & Medical Physics (pp. 3989–3994). Southampton, UK: University of Southampton.

  • Ivanenko, Y. P., Cappellini, G., Dominici, N., Poppele, R. E., & Lacquaniti, F. (2005). Coordination of locomotion with voluntary movements in humans. The Journal of Neuroscience, 25(31), 7238–7253.

    Article  Google Scholar 

  • Ivanenko, Y. P., Poppele, R. E., & Lacquaniti, F. (2004). Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology, 556(1), 267–282.

    Article  Google Scholar 

  • Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot twendy-one. In IEEE International Conference on Robotics and Automation (pp. 580–586), Kobe, Japan.

  • Jafari, A., Tsagarakis, N., & Caldwell, D. G. (2011). Exploiting natural dynamic for energy minimization using an actuator with adjustable stiffness (awas). In IEEE International Conference on Robotics and Automation (pp. 4632–4637), Shanghai, China.

  • Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., & Inoue, H. (2002). A fast dynamically equilibrated walking trajectory generation method of humanoid robot. Autonomous Robots, 12(1), 71–82.

    Article  MATH  Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., et al. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE International Conference on Robotics and Automation (pp. 1620–1626), Taipei, Taiwan.

  • Kaynov, D., Soueres, P., Pierro, P., & Balaguer, C. (2009). A practical decoupled stabilizer for joint-position controlled humanoid robots. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3392–3397), St. Louis, MO, USA.

  • Kormushev, P., Ugurlu, B., Calinon, S., Tsagarakis, N. G., & Caldwell, D. G. (2011). Bipedal walking energy minimization by reinforcement learning with evolving policy parameterization. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 318–324), San Francisco, CA, USA.

  • Kuo, A. D. (2002). Energetics of actively powered locomotion using the simplest walking model. Journal of Biomechanical Engineering, 124, 113–120.

    Article  Google Scholar 

  • Kurazame, R., Tanaka, S., Yamashita, M., Hasegawa, T., & Yoneda, K. (2005). Straight legged walking of a biped robot. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 337–343), Edmonton, Canada

  • Mitobe, K., Capi, G., & Nasu, Y. (2000). Control of walking robots based on manipulation of the zero moment point. Robotica, 18(06), 651–657.

    Article  Google Scholar 

  • Morisawa, M., Harada, K., Kajita, S., Nakaoka, S., Fujiwara, K., Kanehiro, F., et al. (2007). Experimentation of humanoid walking allowing immediate modification of foot place based on analytical solution. In IEEE International Conference on Robotics and Automation (pp. 3989–3994), Rome, Italy.

  • Moro, F., Gini, G., Zefran, M., & Rodic, A. (2010). Simulation for the optimal design of a biped robot: Analysis of energy consumption. In International Conference on Simulation, Modeling, and Programming for Autonomous Robots, Darmstadt, Germany.

  • Moro, F. L., Spröwitz, A., Tuleu, A., Vespignani, M., Tsagarakis, N. G., Ijspeert, A. J., et al. (2013). Horse-like walking, trotting and galloping derived from kinematic motion primitives (kmps) and their application to walk/trot transitions in a compliant quadruped robot. Biological Cybernetics, 107, 309–320.

    Article  MathSciNet  Google Scholar 

  • Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2011). A human-like walking for the compliant humanoid coman based on com trajectory reconstruction from kinematic motion primitives. In IEEE-RAS International Conference on Humanoid Robots (pp. 364–370), Bled, Slovenia.

  • Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012a). Efficient human-like walking for the compliant humanoid coman based on kinematic motion primitives (kmps). In IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA.

  • Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012b). The kinematic motion primitives (kmps) of periodic motions, discrete motions, and motions that are a combination of discrete and periodic movements. In Cognitive Neuroscience Robotics (CNR) Workshop at the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal.

  • Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012c). On the kinematic motion primitives (kmps)—Theory and application. Frontiers in Neurorobotics, 6(10), 1–18.

    Google Scholar 

  • Nagasaka, K., Kuroki, Y., Suzuki, S., Itoh, Y., & Yamaguchi, J. (2004). Integrated motion control for walking, jumping and running on a small bipedal entertainment robot. In IEEE International Conference on Robotics and Automation (pp. 3189–3194), Barcelona, Spain.

  • Sheridan, T. (1966). Three models of preview control. IEEE Transactions on Human Factors in Electronics, 2, 91–102.

    Article  Google Scholar 

  • Silva, F. M., & Machado, J. A. T. (1999). Energy analysis during biped walking. In IEEE International Conference on Robotics and Automation (pp. 59–64), Detroit, MI, USA.

  • Sugihara, T. (2009). Standing stabilizability and stepping maneuver in planar bipedalism based on the best com-zmp regulator. In IEEE International Conference on Robotics and Automation (pp. 1966–1971), Kobe, Japan.

  • Torres-Jara, E. (2005). Obrero: A platform for sensitive manipulation. In IEEE-RAS International Conference on Humanoid Robots (pp. 327–332), Tsukuba, Japan.

  • Tsagarakis, N. G., Becchi, F., Singlair, M., Metta, G., Caldwell, D. G., & Sandini, G. (2007a). Lower body realization of the baby humanoid ’icub’. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3616–3622), San Diego, CA, USA.

  • Tsagarakis, N. G., Laffranchi, M., Vanderborght, B., & Caldwell, D. G. (2009). A compact soft actuator unit for small scale human friendly robots. In IEEE International Conference on Robotics and Automation (pp. 4356–4362), Kobe, Japan.

  • Tsagarakis, N. G., Li, Z., Saglia, J. A., & Caldwell, D. G. (2011). The design of the lower body of the compliant humanoid robot ccub. In IEEE International Conference on Robotics and Automation (pp. 2035–2040), Shanghai, China.

  • Tsagarakis, N. G., Metta, G., Sandini, G., Vernon, D., Beira, R., Becchi, F., et al. (2007b). icub: The design and realization of an open humanoid platform for cognitive and neuroscience research. Advanced Robotics, 21(10), 1151–1175.

    Article  Google Scholar 

  • Ugurlu, B., Saglia, J. A., Tsagarakis, N. G., & Caldwell, Darwin G. (2012). Hopping at the resonance frequency: A trajectory generation technique for bipedal robots with elastic joints. In: IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA.

  • Vanderborght, B., Verrelst, B., Van Ham, R., Van Damme, M., Lefeber, D., Duran, B. M. Y., et al. (2006). Exploiting natural dynamics to reduce energy consumption by controlling the compliance of soft actuators. International Journal of Robotics Research, 25(4), 343–358.

    Google Scholar 

  • Yamasaki, F., Hosoda, K., & Asada, M. (2002). An energy consumption based control for humanoid walking. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2473–2477), Lausanne, Switzerland.

Download references

Acknowledgments

This work is supported by the European Commission FP7, AMARSI Project ICT-2009-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico L. Moro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moro, F.L., Tsagarakis, N.G. & Caldwell, D.G. Walking in the resonance with the COMAN robot with trajectories based on human kinematic motion primitives (kMPs). Auton Robot 36, 331–347 (2014). https://doi.org/10.1007/s10514-013-9357-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9357-9

Keywords

Navigation