Skip to main content

Advertisement

Log in

Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on RoboCat-1 and HyQ

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper, we introduce a method that synergistically combines an analytical pattern generator and a feedback controller frame, which are developed for the purpose of synthesizing dynamic quadrupedal trot-walking locomotion on flat and uneven surfaces. To begin with, the pattern generator analytically produces feasible and dynamically balanced joint motions in accordance with the desired trot-walking characteristics, with no empirical parameter tuning requirements. In concurrence with the pattern generation, a two-phased controller frame is constructed for closed-loop sensory feedback: (i) virtual admittance controller via force sensing, (ii) upper torso angular momentum regulation via gyro sensing. The former controller evaluates joint force errors and generates the corresponding joint displacement for a given set of virtual spring-damper couples. Together with the position constraints, these displacements are additionally fed-back to local servos for achieving compliant quadrupedal locomotion with which the position/force trade-off is addressed. The second controller, that is simultaneously used, evaluates the upper torso angular momentum rate change error using measured and reference orientation information. It then regulates the torso orientation in a dynamically consistent way as the rotational inertia is characterized. In order to validate the proposed methodology several experiments are conducted on both flat and uneven surfaces, using two robots with distinct properties; a \(\sim \)7 kg cat-sized electrically actuated quadruped (RoboCat-1), and a \(\sim \)80 kg Alpine Ibex-sized hydraulically actuated quadruped (HyQ). As a result we demonstrate continuous, repetitive, compliant and dynamically balanced trot-walking cycles in real-robot experiments, adequately confirming the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Barasuol, V., Buchli, J., Semini, C., Frigero, M., De Pieri, E. R., & Caldwell, D. G. (2013). A reactive controller framework for quadrupedal locomotion on challenging terrain. In IEEE International conference on robotics and automation (ICRA), Karlsruhe, Germany (pp. 2539–2546).

  • Bazeille, S., Barasuol, V., Focchi, M., Havoutis, I., Frigerio, M., Buchli, J., et al. (2014). Quadruped robot trotting over irregular terrain assisted by stereo-vision. Journal of Intelligent Service Robotics, 7(2), 67–77.

    Article  Google Scholar 

  • Boaventura, T., Medrano-Cerda, G. A., Semini, C., Buchli, J., & Caldwell, D. G. (2013). Stability and performance of the compliance controller of the quadruped robot HyQ. In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 1458–1464).

  • Boaventura, T., Semini, C., Buchli, J., Frigero, M., Focchi, M., & Caldwell, D. G. (2012). Dynamic torque control of a hydraulic quadruped robot. In IEEE international conference on robotics and automation (ICRA), St. Paul, US (pp. 1889–1894).

  • Buschmann, T., Lohmeier, S., & Ulbrich, H. (2009). Biped walking control based on hybrid position/force control. In IEEE international conference on intelligent robots and systems (IROS), St. Louis, US (pp. 3019–3024).

  • Byl, K., Shkolnik, A., Prentice, S., Roy, N., & Tedrake, R. (2009). Reliable dynamic motions for a stiff quadruped. Springer Tracks in Advanced Robotics, 54, 319–328.

    Article  Google Scholar 

  • Colgate, E., & Hogan, N. (1989). An analysis of contact instability in terms of passive physical equivalents. In IEEE international conference on robotics and automation (ICRA), Scottsdale, US (pp. 404–409).

  • Colgate, J. E. (1994). Coupled stability of multiport systems—theory and experiments. Transactions on ASME, Journal of Dynamic Systems, Measurement, and Control, 116(3), 419–428.

    Article  MATH  Google Scholar 

  • Fasse, E. (1987). Stability robustness of impedance controlled manipulators coupled to passive environments. Massachusetts Institute of Technology: Master’s Dissertation.

  • Ferris, D. P., Louie, M., & Farley, C. T. (1998). Running in the real world: Adjusting leg stiffness for different surfaces. Royal Society London, 265, 989–993.

    Article  Google Scholar 

  • Focchi, M., Barasuol, V., Havoutis, I., Buchli, J., Semini, C., & Caldwell, D. G. (2013). Local reflex generation for obstacle negotiation in quadrupedal locomotion. In International conference on climbing and walking robots (CLAWAR), Sydney, Australia (pp. 1–8).

  • Fujimoto, Y., Obata, S., & Kawamura, A. (1998). Robust bipedal walking with active interaction control between foot and ground. In IEEE international conference on robotics and automation (ICRA), Leuven, Belgium (pp. 2030–2035).

  • Galloway, K. C., Clark, J. E., & Koditschek, D. E. (2013). Variable stiffness legs for robust, efficient, and stable dynamic running. ASME Journal of Mechanisms and Robotics, 5(1), 677–688.

    Google Scholar 

  • Havoutis, I., Ortiz, J., Bazeille, S., Barasuol, V., Semini C., & Caldwell, D.G. (2013). Onboard perception-based trotting and crawling with the hydraulic quadruped robot (HyQ). In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 6052–6057).

  • Hutter, M., Remy, C. D., Hoepflinger, M. A., & Siegwart, R. (2013). Efficient and versatile locomotion with highly compliant legs. IEEE Transactions on Mechatronics, 18(2), 449–458.

    Article  Google Scholar 

  • Hyon, S.-H. (2009). Compliant terrain adaptation for biped humanoids without measuring ground surface and contact forces. IEEE Transactions on Robotics, 25(1), 677–688.

    Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In IEEE international conference on robotics and automation (ICRA), Taipei, Taiwan (pp. 1620–1626).

  • Kalakrishnan, M., Buchli, J., Pastor, P., Mistry, M., & Schaal, S. (2011). Learning, planning and control for quadruped locomotion over challenging terrain. International Journal of Robotics Research, 30(2), 236–258.

    Article  Google Scholar 

  • Kim, Y.-D., Lee, B.-J., Ryu, J.-H., & Kim, J.-H. (2007). Landing force control for humanoid robot by time-domain passivity approach. IEEE Transactions on Robotics, 23(6), 1294–1301.

    Article  Google Scholar 

  • Kimura, H., Fukuoka, Y., & Cohen, A. H. (2007). Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts. International Journal of Robotics Research, 26(5), 475–490.

    Article  Google Scholar 

  • Koolen, T., de Boer, T., Rebula, J. R., Goswami, A., & Pratt, J. E. (2012). Capturability-based analysis and control of legged locomotion, part 1: Theory and application to three simple gait models. International Journal of Robotics Research, 31(9), 1094–1113.

    Article  Google Scholar 

  • Kurazume, R., Yoneda, K., & Hirose, S. (2002). Feedforward and feedback dynamic trot gait control for quadruped walking vehicle. Autonomous Robots, 12(2), 157–172.

    Article  MATH  Google Scholar 

  • Maufroy, C., Kimura, H., & Takase, K. (2010). Integration of posture and rhythmic motion controls in quadrupedal dynamic walking using phase modulations based on leg loading/unloading. Autonomous Robots, 28(3), 331–353.

    Article  Google Scholar 

  • Morimoto, J., Endo, G., Nakanishi, J., & Cheng, G. (2008). A biologically inspired biped locomotion strategy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model. IEEE Transactions on Robotics, 24(1), 185–191.

    Article  Google Scholar 

  • Moro, F. L., Sproewitz, A., Tuleu, A., Vespignani, M., Tsagarakis, N. G., Ijspeert, A. J., et al. (2013). Horse-like walking, trotting, and galloping derived from kinematic motion primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biological Cybernetics, 107(3), 309–320.

    Article  MathSciNet  Google Scholar 

  • Murakami, T., Yu, F., & Ohnishi, K. (1993). Torque sensorless control in multidegree-of-freedom manipulator. IEEE Transactions on Industrial Electronics, 40(2), 259–265.

    Article  Google Scholar 

  • Ott, C., Roa, M. A., & Hirzinger, G. (2011). Posture and balance control for biped robots based on contact force optimization. In IEEE international conference on humanoid robots (humanoids), Bled, Slovenia (pp. 26–32).

  • Raibert, M., Blankespoor, K., Nelson, G., Playtor, R., & the Big-Dog Team (2008). BigDog, the rough-terrain quadruped robot. In The 17th world cong. The international federation automatic control, Seoul, Korea (pp. 10822–10825).

  • Righetti, L., & Ijspeert, A. J. (2008). Pattern generators with sensory feedback for the control of quadruped locomotion. In IEEE international conference on robotics and automation (ICRA), Pasadena, US (pp. 819–824).

  • Rutishauser, S., Sproewitz, A., Righetti, L., & Ijspeert, A. J. (2008). Passive compliant quadruped robot using central pattern generators for locomotion control. In IEEE international conference on biomedical robotics and biomechatronics (BioRob), Scottsdale, US (pp. 710–715).

  • Sangok, S., Wang, A., Chuah, M. Y., Otten, D., Lang, J., & Kim S. (2013). Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot. In Proceedings of the IEEE conference on robotics and automation Karlsruhe, Germany (pp. 3292–3297).

  • Semini, C., Barasuol, V., Boaventura, T., Frigerio, M., & Buchli, J. (2013). Is active impedance the key to a breakthrough for legged robots? In IEEE international symposium on robotics research (ISRR), Singapore (pp. 1–16).

  • Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., & Caldwell, D. G. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Institute of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849.

    Article  Google Scholar 

  • Sproewitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M., Badri, E., & Ijspeert, A. J. (2011). Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot. International Journal of Robotics Research, 32(8), 932–950.

    Article  Google Scholar 

  • Sugihara, T., & Nakamura, Y. (2009). Boundary condition relaxation method for stepwise pedipulation planning of biped robots. IEEE Transactions on Robotics, 25(3), 658–669.

    Article  Google Scholar 

  • Ugurlu, B., Havoutis, I., Semini, C., & Caldwell, D. G. (2013). Dynamic trot-walking with the hydraulic quadruped robot—HyQ: Analytical trajectory generation and active compliance control. In IEEE international conference on intelligent robots and systems (IROS), Tokyo, Japan (pp. 6044–6051).

  • Ugurlu, B., Kotaka, K., & Narikiyo, T. (2013). Actively compliant locomotion control on rough terrain: Cyclic jumping and trotting experiments on a stiff-by-nature quadruped. In IEEE international conference on robotics and automation (ICRA), Karlsruhe, Germany (pp. 3298–3305).

  • Ugurlu, B., Saglia, J. A., Tsagarakis, N. G., Morfey, S., & Caldwell, D. G. (2014). Bipedal hopping pattern generation for passively compliant humanoids: Exploiting the resonance. IEEE Transactions on Industrial Electronics, 61(10), 5431–5443.

    Article  Google Scholar 

  • Winkler, A., Havoutis, I., Bazeille, S., Ortiz, J., Focchi, M., Dillmann, R., Caldwell, D. G., & Semini, C. (2014). Path planning with force-based foothold adaptation and virtual model control for torque controlled quadruped robots. In IEEE international conference on robotics and automation (ICRA), Hong Kong (pp. 6476–6482).

  • Yamada, Y., Nishikawa, S., Shida, K., Niiyama, R., & Kuniyoshi Y. (2011). Neural-body coupling for emergent locomotion: A musculoskeletal quadruped robot with spinobulbar model. In IEEE international conference on intelligent robots and systems (IROS), San Francisco, US (pp. 1499–1506).

  • Yoneda, K., Iiyama, H., & Hirose, S. (1996). Intermittent trot gait of a quadruped walking machine dynamic stability control of an omnidirectional walk. In IEEE international conference on robotics and automation (ICRA), Minnesota, US (pp. 3002–3007).

  • Zheng, Y.-F., & Hemami, H. (1985). Mathematical modeling of a robot collision with its environment. Journal of Robotic Systems, 2(3), 289–307.

    Article  Google Scholar 

Download references

Acknowledgments

In this study, the RoboCat-1 related portion is partially supported by Hitech Research Center, projects for private universities, supplied by the Ministry of Education, Culture, Sports, Science and Technology, Japan. The HyQ related portion is supported by Fondazione Istituto Italiano di Tecnologia, Genova, Italy. The authors would like to thank Takao Kawasaki, Kazuyuki Hyodo, Michihiro Kawanishi, Jesus Ortiz, Jake Goldsmith, Marco Frigero, Michele Focchi, Thiago Boaventura, Stephane Bazeille, Bilal Rehman, Hamza Khan, and the team of IIT Advanced Robotics technicians for their kind assistance and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barkan Ugurlu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 18685 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ugurlu, B., Havoutis, I., Semini, C. et al. Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on RoboCat-1 and HyQ. Auton Robot 38, 415–437 (2015). https://doi.org/10.1007/s10514-015-9422-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9422-7

Keywords

Navigation