Skip to main content
Log in

Finger contact sensing and the application in dexterous hand manipulation

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper we introduce a novel contact-sensing algorithm for a robotic fingertip which is equipped with a 6-axis force/torque sensor and covered with a deformable rubber skin. The design and the sensing algorithm of the fingertip for effective contact information identification are introduced. Validation tests show that the contact sensing fingertip can estimate contact information, including the contact location on the fingertip, the direction and the magnitude of the friction and normal forces, the local torque generated at the surface, at high speed (158–242 Hz) and with high precision. Experiments show that the proposed algorithm is robust and accurate when the friction coefficient \(\le \)1. Obtaining such contact information in real-time are essential for fine object manipulation. Using the contact sensing fingertip for surface exploration has been demonstrated, indicating the advantage gained by using the identified contact information from the proposed contact-sensing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. The work presented in this paper has been done in collaboration between King’s College London (KCL), Université Pierre et Marie Curie (UPMC) and Shadow Robot Company (Shadow) within the HANDLE project (grant agreement ICT 231640). KCL has contributed on the fingertip contact sensing algorithm, Shadow has contributed in the fingertip design and fabrication and UPMC has contributed on the finger force feedback control and the object surface exploration using the contact information identified by the fingertip. The object pose estimation using the finger has been done by KCL with contribution from UPMC.

References

  • Agache, P. G., Monneur, C., Leveque, J. L., & De Rigal, J. (1980). Mechanical properties and Young’s modulus of human skin in vivo. Archives of Dermatological Research, 269(3), 221–232.

    Article  Google Scholar 

  • Back, J., Bimbo, J., Noh, Y., Seneviratne, L. D., Althoefer, K., & Liu, H. (2014). Controlling a contact sensing finger for surface haptic exploration. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2736–2741).

  • Bard, Y. (1970). Comparison of gradient methods for the solution of nonlinear parameter estimation problems. SIAM Journal on Numerical Analysis, 7(1), 157–186.

    Article  MATH  MathSciNet  Google Scholar 

  • Bicchi, A., Salisbury, J. K., & Brock, D. L. (1993). Contact sensing from force measurements. The International Journal of Robotics Research, 12(3), 249–262.

    Article  Google Scholar 

  • Bicchi, A. (2000). Hands for dexterous manipulation and robust grasping: A difficult road toward simplicity. IEEE Transactions on Robotics and Automation, 16(6), 652–662.

    Article  Google Scholar 

  • Bimbo, J., Seneviratne, L. D., Althoefer, K., & Liu, H. (2013). Combining touch and vision for the estimation of an object’s pose during manipulation. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4021–4026).

  • Bossert, D., Ly, U. L., & Vagners, J. (1996). Experimental evaluation of a hybrid position and force surface following algorithm for unknown surfaces. In Proceedings of IEEE International Conference on Robotics and Automation, 1996 (Vol. 3, pp. 2252–2257).

  • Chang, W. C. (2004). Cartesian-based planar contour following with automatic hybrid force and visual feedback. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 2004 (Vol. 3, pp. 3062–3067).

  • Dahiya, R. S., Metta, G., Valle, M., & Sandini, G. (2010). Tactile sensing-from humans to humanoids. IEEE Transactions on Robotics, 26(1), 1–20.

    Article  Google Scholar 

  • Dahiya, R. S., Cattin, D., Adami, A., Collini, C., Barboni, L., Valle, M., et al. (2011). Towards tactile sensing system on chip for robotic applications. IEEE Sensors Journal, 11(12), 3216–3226.

    Article  Google Scholar 

  • Dargahi, J. (2000). A piezoelectric tactile sensor with three sensing elements for robotic, endoscopic and prosthetic applications. Sensors and Actuators A: Physical, 80(1), 23–30.

    Article  Google Scholar 

  • De Maria, G., Natale, C., & Pirozzi, S. (2012). Force/tactile sensor for robotic applications. Sensors and Actuators A: Physical, 175, 60–72.

    Article  Google Scholar 

  • De Maria, G., Natale, C., & Pirozzi, S. (2013). Tactile data modeling and interpretation for stable grasping and manipulation. Robotics and Autonomous Systems, 61(9), 1008–1020.

    Article  Google Scholar 

  • Gálvez, J. A., & Gonzalez de Santos, P. (2001). Intrinsic tactile sensing for the optimization of force distribution in a pipe crawling robot. IEEE/ASME Transactions on Mechatronics, 6(1), 26–35.

    Article  Google Scholar 

  • Ho, V. A., Dao, D. V., Sugiyama, S., & Hirai, S. (2011). Development and analysis of a sliding tactile soft fingertip embedded with a microforce/moment sensor. IEEE Transactions on Robotics, 27(3), 411–424.

    Article  Google Scholar 

  • Howe, R. D., & Cutkosky, M. R. (1996). Practical force-motion models for sliding manipulation. The International Journal of Robotics Research, 15(6), 557–572.

    Article  Google Scholar 

  • Inoue, T., & Hirai, S. (2006). Elastic model of deformable fingertip for soft-fingered manipulation. IEEE Transactions on Robotics, 22(6), 1273–1279.

    Article  Google Scholar 

  • Inoue, T., & Hirai, S. (2009). Mechanics and control of soft-fingered manipulation. London: Springer.

    Google Scholar 

  • Jamali, N., & Sammut, C. (2011). Majority voting: Material classification by tactile sensing using surface texture. IEEE Transactions on Robotics, 27(3), 508–521.

    Article  Google Scholar 

  • Jatta, F., Legnani, G., & Visioli, A. (2006). Friction compensation in hybrid force/velocity control of industrial manipulators. IEEE Transactions on Industrial Electronics, 53, 604–613.

    Article  Google Scholar 

  • Johansson, R. S., & Flanagan, J. R. (2009). Coding and use of tactile signals from the fingertips in object manipulation tasks. Nature Reviews Neuroscience, 10(5), 345–359.

    Article  Google Scholar 

  • Kao, I., & Cutkosky, M. R. (1993). Comparison of theoretical and experimental force/motion trajectories for dextrous manipulation with sliding. The International Journal of Robotics Research, 12(6), 529–534.

    Article  Google Scholar 

  • Kao, I., & Yang, F. (2004). Stiffness and contact mechanics for soft fingers in grasping and manipulation. IEEE Transactions on Robotics and Automation, 20(1), 132–135.

    Article  Google Scholar 

  • Kemp, C. C., Edsinger, A., & Torres-Jara, E. (2007). Challenges for robot manipulation in human environments [grand challenges of robotics]. IEEE Robotics & Automation Magazine, 14(1), 20–29.

    Article  Google Scholar 

  • Lederman, S. J., & Klatzky, R. L. (1990). Haptic classification of common objects: Knowledge-driven exploration. Cognitive Psychology, 22(4), 421–459.

    Article  Google Scholar 

  • Liang, X., & Boppart, S. A. (2010). Biomechanical properties of in vivo human skin from dynamic optical coherence elastography. IEEE Transactions on Biomedical Engineering, 57(4), 953–959.

    Article  Google Scholar 

  • Liu, H., Song, X., Bimbo, J., Althoefer, K., & Seneviratne, L. (2012a). Surface material recognition through haptic exploration using an intelligent contact sensing finger. In IEEE/RSJ International Conference Intelligent Robots and Systems (pp. 52–57).

  • Liu, H., Song, X., Nanayakkara, T., Seneviratne, L. D., & Althoefer, K. (2012b). A computationally fast algorithm for local contact shape and pose classification using a tactile array sensor. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1410–1415).

  • Madsen, K., Nielsen, H. B., & Tingleff, O. (2004). Methods for non-linear least square problems (2nd ed.). IMM, DTU: Lecture Notes.

    Google Scholar 

  • Murakami, K., & Hasegawa, T. (2005). Tactile sensing of edge direction of an object with a soft fingertip contact. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 2571–2577).

  • Nguyen, K. C., & Perdereau, V. (2013). Fingertip force control based on max torque adjustment for dexterous manipulation of an anthropomorphic hand. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 3557–3563).

  • Ohka, M., Kobayashi, H., Takata, J., & Mitsuya, Y. (2008). An experimental optical three-axis tactile sensor featured with hemispherical surface. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2(5), 860–873.

    Article  Google Scholar 

  • Okamura, A. M., & Cutkosky, M. R. (2001). Feature detection for haptic exploration with robotic fingers. The International Journal of Robotics Research, 20(12), 925–938.

    Article  Google Scholar 

  • Olsson, H., Åström, K. J., Gäfvert, M., & Lischinsky, P. (1998). Friction models and friction compensation. European Journal of Control, 4(3), 176–195.

    Article  MATH  Google Scholar 

  • Pawluk, D. T., & Howe, R. D. (1999). Dynamic lumped element response of the human fingerpad. Journal of Biomechanical Engineering, 121(2), 178–183.

    Article  Google Scholar 

  • Puangmali, P., Liu, H., Seneviratne, L. D., Dasgupta, P., & Althoefer, K. (2012). Miniature 3-axis distal force sensor for minimally invasive surgical palpation. IEEE/ASME Transactions on Mechatronics, 17(4), 646–656.

    Article  Google Scholar 

  • Rothwell, J. C., Traub, M. M., Day, B. L., Obeso, J. A., Thomas, P. K., & Marsden, C. D. (1982). Manual motor performance in a deafferented man. Brain, 105(3), 515–542.

    Article  Google Scholar 

  • Salisbury, J. Jr. (1984). Interpretation of contact geometries from force measurements. In Proceedings of the IEEE International Conference on Robotics and Automation, 1984 (Vol. 1, pp. 240–247). IEEE.

  • Salo, T., Vančura, T., & Baltes, H. (2006). CMOS-sealed membrane capacitors for medical tactile sensors. Journal of Micromechanics and Microengineering, 16(4), 769–778.

    Article  Google Scholar 

  • Schmitz, A., Maiolino, P., Maggiali, M., Natale, L., Cannata, G., & Metta, G. (2011). Methods and technologies for the implementation of large-scale robot tactile sensors. IEEE Transactions on Robotics, 27(3), 389–400.

    Article  Google Scholar 

  • Shimojo, M., Namiki, A., Ishikawa, M., Makino, R., & Mabuchi, K. (2004). A tactile sensor sheet using pressure conductive rubber with electrical-wires stitched method. IEEE Sensors Journal, 4(5), 589–596.

    Article  Google Scholar 

  • Song, X., Liu, H., Bimbo, J., Althoefer, K., & Seneviratne, L. D. (2012). A novel dynamic slip prediction and compensation approach based on haptic surface exploration. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 4511–4516).

  • Song, X., Liu, H., Althoefer, K., Nanayakkara, T., & Seneviratne, L. D. (2014). Efficient break-away friction ratio and slip prediction based on haptic surface exploration. IEEE Transactions on Robotics, 30(1), 203–219.

    Article  Google Scholar 

  • Teshigawara, S., Tsutsumi, T., Shimizu, S., Suzuki, Y., Ming, A., Ishikawa, M., & Shimojo, M. (2011). Highly sensitive sensor for detection of initial slip and its application in a multi-fingered robot hand. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 1097–1102).

  • Wettels, N., Santos, V. J., Johansson, R. S., & Loeb, G. E. (2008). Biomimetic tactile sensor array. Advanced Robotics, 22(8), 829–849.

    Article  Google Scholar 

  • Wisitsoraat, A., Patthanasetakul, V., Lomas, T., & Tuantranont, A. (2007). Low cost thin film based piezoresistive MEMS tactile sensor. Sensors and Actuators A: Physical, 139(1), 17–22.

    Article  Google Scholar 

  • Xydas, N., & Kao, I. (1999). Modeling of contact mechanics and friction limit surfaces for soft fingers in robotics, with experimental results. The International Journal of Robotics Research, 18(9), 941–950.

    Article  Google Scholar 

  • Yamada, T., Tanaka, A., Yamada, M., Yamamoto, & H., Funahashi, Y. (2010). Autonomous sensing strategy for parameter identification of contact conditions by active force sensing. In IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 839–844).

  • Yousef, H., Boukallel, M., & Althoefer, K. (2011). Tactile sensing for dexterous in-hand manipulation in robotics–A review. Sensors and Actuators A: Physical, 167(2), 171–187.

    Article  Google Scholar 

Download references

Acknowledgments

This research received support provided by the HANDLE project funded by the European Commission within the Seventh Framework Programme FP7 (FP7/2007-2013) under Grant Agreement ICT 231640.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Nguyen, K.C., Perdereau, V. et al. Finger contact sensing and the application in dexterous hand manipulation. Auton Robot 39, 25–41 (2015). https://doi.org/10.1007/s10514-015-9425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9425-4

Keywords