Skip to main content
Log in

An optimal data association method based on the minimum weighted bipartite perfect matching

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Data association is an important problem in simultaneous localization and mapping, however, many single frame based methods only provide suboptimal solutions. In this paper an optimal graph theoretic approach is proposed. We formulate the data association as an integer programming (IP) and then prove that it is equivalent to a minimum weight bipartite perfect matching problem. Therefore, optimally solving the bipartite matching problem implies optimally resolving the IP, i.e. the data association problem. We compare the proposed approach with other widely used data association methods. Experimental results validate the effectiveness and accuracy of the proposed approach, and manifest that this graph based data association method can be used for online application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. This simulator is available at http://webdiis.unizar.es/~neira/5007439/dalab.zip.

References

  • Bailey, T. (2002). Mobile Robot Localisation and Mapping in Extensive Outdoor Environments. PhD Thesis, Australian Centre for Field Robotics, University of Sydney.

  • Bailey, T., Nebot, E. M., Rosenblatt, J. K., & Durrant-Whyte, H. F. (2000). Data association for mobile robot navigation: a graph theoretic approach. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA ’00), San Francisco, CA (vol. 3, pp. 2512–2517). IEEE

  • Chong, C.-Y. (2012). Graph approaches for data association. In: Proceedings of the 15th International Conference on Information Fusion (FUSION), Singapore (pp. 1578–1585).

  • Cong, S., & Hong, L. (1999). Computational complexity analysis for multiple hypothesis tracking. Mathematical and Computer Modelling, 29, 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  • Cox, I. J., & Hingorani, S. L. (1996). An efficient implementation of Reid’s multiple hypothesis tracking algorithm and its evaluation for the purpose of visual tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 18, 138–150.

    Article  Google Scholar 

  • Davey, S. J. (2007). Simultaneous localization and map building using the probabilistic multi-hypothesis tracker. IEEE Transactions on Robotics, 23, 271–280.

    Article  Google Scholar 

  • Dezert, J., & Bar-Shalom, Y. (1993). Joint probabilistic data association for autonomous navigation. IEEE Transactions on Aerospace and Electronic Systems, 29, 1275–1286.

    Article  Google Scholar 

  • Durrant-Whyte, H. F., Majunder, S., Batista, M., & Scheding, S. (2001). A Bayesian algorithmfor simultaneous localization and map building. In: Proceedings of the International Symposium of Robotics Research (ISRR01), Lorne Victoria (pp. 3118–3123).

  • Fielding, G., & Kam, M. (1997). Applying the Hungarian method to stereo matching. In: Proceedings of the Presented at the 36th IEEE Conference on Decision and Control, San Diego, CA.

  • Fortmann, T. E., Bar-Shalom, Y., & Scheffe, M. (1983). Sonar tracking of multiple targets using joint probabilistic data association. IEEE Journal of Oceanic Engineering, OE–8, 173–184.

    Article  Google Scholar 

  • Fredman, M. L., & Tarjan, R. E. (1997). Fibonacci heaps and their uses in improved network optimization algorithms. Journal of the ACM, 34, 596–615.

    Article  MathSciNet  Google Scholar 

  • Goemans, M. X. (2013). 1.2 Minimum weight perfect matching. In Lecture notes on bipartite matching, pp. 6–11. http://math.mit.edu/~goemans/18433S13/matching-notes.pdf.

  • Goodman, I. R., Ronald, P. S., & Nguyen, H. T. (1997). Mathematics of data fusion (p. 33). Norwell, MA, USA: Kluwer Academic Publishers.

  • Guivant, J. E., Masson, F. R., & Nebot, E. M. (2002). Simultaneous localization and map building using natural features and absolute information. Robotics and Autonomous Systems, 40, 79–90.

    Article  Google Scholar 

  • Huang, S., Wang, Z., & Dissanayake, G. (2008). Sparse local submap joining filter for building large-scale maps. IEEE Transactions on Robotics, 24, 1121–1130.

    Article  Google Scholar 

  • Huang, G. Q. P., Zhang, X. Z., Rad, A. B., & Wong, Y. K. (2008). An optimal graph theoretic approach to data association in SLAM. In: Proceeding of the 17th IFAC World Congress, Seoul (pp. 14669–14674).

  • Leonard, J. J., & Durrant-Whyte, H. F. (1992). Dynamic map building for an autonomous mobile robot. International Journal of Robotics Research, 11, 286–298.

    Article  Google Scholar 

  • Li, X. L., Luo, Z. Q., Wong, K. M., & Bosse, E. (1999). An interior point linear programming approach to two-scan data association. IEEE Transactions on Aerospace and Electronic Systems, 35, 474–490.

    Article  Google Scholar 

  • Neira, J., & Tardós, J. D. (2001). Data association in stochastic mapping using the joint compatibility test. IEEE Transactions on Robotics and Automation, 17, 890–897.

    Article  Google Scholar 

  • Nieto, J., Guivant, J., Nebot, E., & Thrun, S. (2003). Real time data association for FastSLAM. In: Proceedings of the Presented at the IEEE International Conference on Robotics and Automation (ICRA ’03), Taipei.

  • Pfingsthorn, M., & Birk, A. (2013). Simultaneous localization and mapping with multimodal probability distributions. The International Journal of Robotics Research, 32, 143–171.

  • Reid, D. B. (1979). An algorithm for tracking multiple targets. IEEE Transaction on Automatic Control, 24, 843–854.

    Article  Google Scholar 

  • Wang, J., He, P., & Cao, W. (2007). Study on the Hungarian algorithm for the maximum likelihood data association problem. Journal of Systems Engineering and Electronics, 18, 27–32.

    Article  MATH  Google Scholar 

  • West, D. B. (2001). Introduction to graph theory (2nd ed.). Upper Saddle River, NJ: Prentice Hall. 24–26,109, 123–130.

    Google Scholar 

  • Wijesoma, W. S., Perera, L. D. L., & Adams, M. D. (2006). Toward multidimensional assignment data association in robot localization and mapping. IEEE Transactions on Robotics, 22, 350–365.

    Article  Google Scholar 

  • Zhang, X. (2009). Chapter 4 Robust regression model for SLAM. In Investigation of simultaneous localization and mapping (SLAM) in dynamic settings (Theses), Hong Kong Polytechnic University, Hong Kong.

  • Zhang, S., Xie, L. H., & Adams, M. D. (2005). An efficient data association approach to simultaneous localization and map building. The International Journal of Robotics Research, 24, 49–60.

    Article  Google Scholar 

  • Zhou, B., & Bose, N. K. (1993). Multitarget tracking in clutter: Fast algorithms for data association. IEEE Transactions on Aerospace and Electronic Systems, 29, 352–363.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61203338). The first author specially thanks the financial support from Jinan University Zhuhai Campus for the introduced talented personnel (Grant No. 50462203). The authors would like to thank the SLAM simulation code from University of Zaragoza.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Rad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Rad, A.B., Huang, G. et al. An optimal data association method based on the minimum weighted bipartite perfect matching. Auton Robot 40, 77–91 (2016). https://doi.org/10.1007/s10514-015-9439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9439-y

Keywords

Navigation