Skip to main content
Log in

Fault detection for service mobile robots using model-based method

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Detection of faults is a topic of high importance because it increases robot dependability, a requirement for the wide acceptance of service robots in domestic environments. This work takes a model-based approach for detecting and identifying actuator faults on differential-drive mobile robots in an indoor environment. An error-bound is calculated between the estimated and measured robot states which is constantly adapted based on the current state and input signals. A fault is detected when the estimation error is outside this bound. The model parameters are learned by the robot using an adaptive law, after the robot deployment in the target environment. Model uncertainties have an important impact on the fault detection performance, and are dealt with by considering the uncertainty bounds in the bound calculations. This ensures no false alarms occur when the uncertainty remains bounded during normal operation. Furthermore an extension to the method is proposed that addresses the problem of detecting small faults. The method is experimentally validated on a iRobot Roomba autonomous robot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson, R., & Bevly, D. M. (2004). Estimation of slip angles using a model based estimator and GPS. Proceedings of the American Control Conference, 3, 2122–2127.

    Google Scholar 

  • Astrom, K. J., & Wittenmark, B. (1994). Adaptive control. Boston: Addison-Wesley.

    Google Scholar 

  • Blanke, M., Kinnaert, M., Lunze, J., & Staroswiecki, M. (2006). Diagnosis and fault-tolerant control (2nd ed.). Berlin: Springer.

    MATH  Google Scholar 

  • Borenstein, J., & Feng, L. (1996). Gyrodometry: A new method for combining data from gyros and odometry in mobile robots. In proceedings of the IEEE international conference on robotics and automation (ICRA), vol. 1 (pp. 423–428)

  • Borenstein, J., Everett, H., & Feng, L. (1996). Where am I?. Ann Arbor: University of Michigan.

    Google Scholar 

  • Carlson, J., & Murphy, R.R. (2003). Reliability analysis of mobile robots. In proceedings of the IEEE international conference on robotics and automation (ICRA), vol. 1 (pp. 274–281).

  • Chen, J., & Patton, R. J. (1999). Robust model-based fault diagnosis for dynamic systems. Boston: Kluwer Academic Publishers.

    Book  MATH  Google Scholar 

  • Christensen, A. L., O’Grady, R., Birattari, M., & Dorigo, M. (2008). Fault detection in autonomous robots based on fault injection and learning. Autonomous Robots, 24(1), 49–67.

    Article  Google Scholar 

  • Dixon, W.E., Walker, I.D., & Dawson, D.M. (2001). Fault detection for wheeled mobile robots with parametric uncertainty. In proceedings of IEEE/ASME international conference on advanced intelligent mechatronics, vol. 2 (pp. 1245–1250).

  • Farrell, J. A., & Polycarpou, M. M. (2006). Adaptive approximation based control: unifying neural, fuzzy and traditional adaptive approximation approaches. New York: Wiley.

    Book  Google Scholar 

  • Ferrari, R., Parisini, T., & Polycarpou, M.M. (2007). A fault detection and isolation scheme for nonlinear uncertain discrete-time sytems. In proceedings of the IEEE conference on decision and control (pp. 1009–1014).

  • Ferrari, R. M., Parisini, T., & Polycarpou, M. M. (2012). Distributed fault detection and isolation of large-scale discrete-time nonlinear systems: An adaptive approximation approach. IEEE Transactions on Automatic Control, 57(2), 275–290.

    Article  MathSciNet  Google Scholar 

  • Goel, P., Dedeoglu, G., Roumeliotis, S. I., & Sukhatme, G. S. (2000). Fault detection and identification in a mobile robot using multiple model estimation and neural network. In proceedings of the IEEE international conference on robotics and automation (ICRA), vol. 3 (pp. 2302–2309).

  • Gustafsson, F. (1997). Slip-based tire-road friction estimation. Automatica, 33(6), 1087–1099.

    Article  MathSciNet  Google Scholar 

  • Iagnemma, K., & Ward, C. C. (2009). Classification-based wheel slip detection and detector fusion for mobile robots on outdoor terrain. Autonomous Robots, 26(1), 33–46.

    Article  Google Scholar 

  • Isermann, R. (1997). Supervision, fault-detection and fault-diagnosis methods—an introduction. Control Engineering Practice, 5(5), 639–652.

    Article  Google Scholar 

  • Isermann, R. (2006). Fault-diagnosis systems: an introduction from fault detection to fault tolerance. Berlin: Springer.

    Book  Google Scholar 

  • Morales, Y., Takeuchi, E., & Tsubouchi, T. (2008). Vehicle localization in outdoor woodland environments with sensor fault detection. In proceedings of the IEEE international conference on robotics and automation (ICRA) (pp. 449–454).

  • Ojeda, L., Cruz, D., Reina, G., & Borenstein, J. (2006). Current-based slippage detection and odometry correction for mobile robots and planetary rovers. IEEE Transactions on Robotics, 22(2), 366–378.

    Article  Google Scholar 

  • Polycarpou, M. M., & Helmicki, A. J. (1995). Automated fault detection and accommodation: a learning systems approach. IEEE Transactions on Systems Man and Cybernetics, 25(11), 1447–1458.

    Article  Google Scholar 

  • Roumeliotis, S. I., Sukhatme, G. S., & Bekey, G. A. (1998). Sensor fault detection and identification in a mobile robot. Proceedings of the Intelligent Robots and Systems, 3, 1383–1388.

    Google Scholar 

  • Scheding, S., Nebot, E., & Durrant-Whyte, H. (1998). The detection of faults in navigation systems: A frequency domain approach. In proceedings of the IEEE international conference on robotics and automation (ICRA), vol. 3 (pp. 2217–2222).

  • Skoundrianos, E. N., & Tzafestas, S. G. (2004). Finding fault-fault diagnosis on the wheels of a mobile robot using local model neural networks. IEEE Robotics & Automation Magazine, 11(3), 83–90.

    Article  Google Scholar 

  • Stavrou, D., Eliades, D., Panayiotou, C., & Polycarpou, M. (2013). A path correction module for two-wheeled service robots under actuator faults. In proceedings of the 21st mediterranean conference on control and automation.

  • Sundvall, P., & Jensfelt, P. (2006). Fault detection for mobile robots using redundant positioning systems. In proceedings of the IEEE international conference on robotics and automation (ICRA), (pp. 3781–3786).

  • Tadele, T. S., de Vries, T., & Stramigioli, S. (2014). The safety of domestic robotics: A survey of various safety-related publications. IEEE Robotics & Automation Magazine, 21(3), 134–142.

    Article  Google Scholar 

  • Thumati, B. T., Dierks, T., & Sarangapani, J. (2012). A model-based fault tolerant control design for nonholonomic mobile robots in formation. The Journal of Defense Modeling and Simulation Applications, Methodology, Technology, 9(1), 17–31.

    Article  Google Scholar 

  • Verma, V., Gordon, G., Simmons, R., & Thrun, S. (2004). Real-time fault diagnosis [robot fault diagnosis]. IEEE Robotics & Automation Magazine, 11(2), 56–66. doi:10.1109/MRA.2004.1310942.

    Article  Google Scholar 

  • Ward, C.C., & Iagnemma, K. (2007). Model-based wheel slip detection for outdoor mobile robots. In proceedings of the IEEE international conference on robotics and automation (ICRA), (pp. 2724–2729).

  • Zhang, X., Polycarpou, M. M., & Parisini, T. (2002). A robust detection and isolation scheme for abrupt and incipient faults in nonlinear systems. IEEE Transactions on Automatic Control, 47(4), 576–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhuo-hua, D., Zi-xing, C., & Jin-xia, Y. (2005). Fault diagnosis and fault tolerant control for wheeled mobile robots under unknown environments: A survey. In proceedings of the IEEE international conference on robotics and automation (ICRA), (pp. 3428–3433).

Download references

Acknowledgments

This research work has been partially funded by the European Research Council (ERC) under the Project ERC-2011-ADG-291508 “Fault-Adaptive Monitoring and Control of Complex Distributed Dynamical Systems” (FAULT-ADAPTIVE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetris Stavrou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavrou, D., Eliades, D.G., Panayiotou, C.G. et al. Fault detection for service mobile robots using model-based method. Auton Robot 40, 383–394 (2016). https://doi.org/10.1007/s10514-015-9475-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9475-7

Keywords

Navigation