Skip to main content
Log in

Unsupervised segmentation of unknown objects in complex environments

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

This paper presents a novel object segmentation approach for highly complex indoor scenes. Our approach starts with a novel algorithm which partitions the scene into distinct regions whose boundaries accurately conform to the physical object boundaries in the scene. Next, we propose a novel perceptual grouping algorithm based on local cues (e.g., 3D proximity, co-planarity, and shape convexity) to merge these regions into object hypotheses. Our extensive experimental evaluations demonstrate that our object segmentation results are superior compared to the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Notes

  1. In our experiments, we set \(\gamma _1=0.9\), and \(\gamma _2=0.85\).

  2. For the experiments, we set \(\beta _1=0.95\), and \(\beta _2=0.4\).

  3. Summarized in Algorithm 2.

  4. We also implemented the case where a boundary point is assigned to a random region (within the rectangular search area) instead of the region which minimizes the distance, and found that except for a faster runtime, it did not yield significant improvements in the overall segmentation accuracy.

  5. We empirically found that \(\delta _{\phi }=10^{\circ }\) and \(\delta _{c}=10^{\circ }\) produced the best results.

  6. See video in the supplementary material.

  7. http://www.vault.willowgarage.com/wgdata1/vol1/solutions_in_perception/Willow_Final_Test_Set/.

  8. http://www.acin.tuwien.ac.at/?id=289.

  9. http://www.cs.brown.edu/pff/segment/.

  10. VLfeat: http://www.vlfeat.org/overview/slic.html.

  11. http://www.cs.toronto.edu/babalex/research.html.

References

  • Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). Slic superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.

    Article  Google Scholar 

  • Arbelaez, P., Maire, M., Fowlkes, C., & Malik, J. (2011). Contour detection and hierarchical image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(5), 898–916.

    Article  Google Scholar 

  • Asif, U., Bennamoun, M., & Sohel, F. (2013). Real-time pose estimation of rigid objects using RGB-D imagery. In ICIEA (pp. 1692–1699).

  • Asif, U., Bennamoun, M., & Sohel, F. (2014a). A model-free approach for the segmentation of unknown objects. In IROS (pp. 4914–4921).

  • Asif, U., Bennamoun, M., & Sohel, F. (2014b). Model-free segmentation and grasp selection of unknown stacked objects. In ECCV (pp. 659–674). Springer.

  • Asif, U., Bennamoun, M., & Sohel, F. (2015a). Discriminative feature learning for efficient RGB-D object recognition. In IROS.

  • Asif, U., Bennamoun, M., & Sohel, F. (2015b). Efficient RGB-D object categorization using cascaded ensembles of randomized decision trees. In ICRA (pp. 1295–1302).

  • Björkman, M., Bergström, N., & Kragic, D. (2014). Detecting, segmenting and tracking unknown objects using multi-label MRF inference. Computer Vision and Image Understanding, 118, 111–127.

    Article  Google Scholar 

  • Bleiweiss, A., & Werman, M. (2009). Fusing time-of-flight depth and color for real-time segmentation and tracking. In A. Kolb & R. Koch (Eds.), Dynamic 3D imaging (pp. 58–69). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bo, L., Ren, X., & Fox, D. (2014). Learning hierarchical sparse features for RGB-(D) object recognition. The International Journal of Robotics Research, 33(4), 581–599.

    Article  Google Scholar 

  • Boykov, Y., & Funka-Lea, G. (2006). Graph cuts and efficient nd image segmentation. International Journal of Computer Vision, 70(2), 109–131.

    Article  Google Scholar 

  • Carreira, J., & Sminchisescu, C. (2010). Constrained parametric min-cuts for automatic object segmentation. In IEEE conference on computer vision and pattern recognition (CVPR), 2010 (pp. 3241–3248). IEEE.

  • Collet, A., Martinez, M., & Srinivasa, S. S. (2011). The moped framework: Object recognition and pose estimation for manipulation. The International Journal of Robotics Research, 30(10), 1284–1306.

    Article  Google Scholar 

  • Cour, T., Benezit, F., & Shi, J. (2005). Spectral segmentation with multiscale graph decomposition. In IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005 (Vol. 2, pp. 1124–1131). IEEE.

  • Cremers, D., Schmidt, F.R., & Barthel, F. (2008). Shape priors in variational image segmentation: Convexity, Lipschitz continuity and globally optimal solutions. In IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008 (pp. 1–6). IEEE.

  • Felzenszwalb, P. F., & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation. International Journal of Computer Vision, 59(2), 167–181.

    Article  Google Scholar 

  • Felzenszwalb, P. F., Girshick, R. B., McAllester, D., & Ramanan, D. (2010). Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(9), 1627–1645.

    Article  Google Scholar 

  • Fenzi, M., Dragon, R., Leal-Taixé, L., Rosenhahn, B., & Ostermann, J. (2012). 3D object recognition and pose estimation for multiple objects using multi-prioritized RANSAC and model updating. In Pattern recognition (pp. 123–133). Springer.

  • Goron, L.C., Marton, Z.C., Lazea, G., & Beetz, M. (2012). Robustly segmenting cylindrical and box-like objects in cluttered scenes using depth cameras. In Proceedings of ROBOTIK 2012, 7th German conference on VDE robotics (pp. 1–6).

  • Gupta, S., Arbelaez, P., & Malik, J. (2013). Perceptual organization and recognition of indoor scenes from RGB-D images. In IEEE conference on computer vision and pattern recognition (CVPR) 2013 (pp. 564–571). IEEE.

  • Hager, G. D., & Wegbreit, B. (2011). Scene parsing using a prior world model. The International Journal of Robotics Research, 30(12), 1477–1507.

    Article  Google Scholar 

  • Harville, M., Gordon, G., & Woodfill, J. (2001). Foreground segmentation using adaptive mixture models in color and depth. In Proceedings of IEEE workshop on detection and recognition of events in video, 2001 (pp. 3–11). IEEE.

  • Hoiem, D., Efros, A. A., & Hebert, M. (2011). Recovering occlusion boundaries from an image. International Journal of Computer Vision, 91(3), 328–346.

    Article  MathSciNet  MATH  Google Scholar 

  • Holz, D., Holzer, S., Rusu, R.B., & Behnke, S. (2012). Real-time plane segmentation using RGB-D cameras. In RoboCup 2011: robot soccer world cup XV (pp. 306–317). Springer.

  • Ignakov, D., Liu, G., & Okouneva, G. (2013). Object segmentation in cluttered and visually complex environments. Autonomous Robots, 37(2), 111–135.

  • Kim, E., & Medioni, G. (2011). 3D object recognition in range images using visibility context. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2011 (pp. 3800–3807), IEEE.

  • Kim, J. S., & Hong, K. S. (2009). Color-texture segmentation using unsupervised graph cuts. Pattern Recognition, 42(5), 735–750.

    Article  MATH  Google Scholar 

  • Kirkpatrick, S. (1984). Optimization by simulated annealing: Quantitative studies. Journal of Statistical Physics, 34(5–6), 975–986.

    Article  MathSciNet  Google Scholar 

  • Kootstra, G., & Kragic, D. (2011). Fast and bottom-up object detection, segmentation, and evaluation using Gestalt principles. In IEEE international conference on robotics and automation (ICRA), 2011 (pp. 3423–3428). IEEE.

  • Kootstra, G., Popović, M., Jørgensen, J. A., Kuklinski, K., Miatliuk, K., Kragic, D., et al. (2012). Enabling grasping of unknown objects through a synergistic use of edge and surface information. The International Journal of Robotics Research, 31(10), 1190–1213.

    Article  Google Scholar 

  • Kuehnle, J., Verl, A., Xue, Z., Ruehl, S., Zoellner, J.M., Dillmann, R., Grundmann, T., Eidenberger, R., & Zoellner, R.D. (2009). 6D object localization and obstacle detection for collision-free manipulation with a mobile service robot. In International conference on advanced robotics, 2009. ICAR 2009 (pp. 1–6). IEEE.

  • Lai, K., Bo, L., Ren, X., & Fox, D. (2011). A large-scale hierarchical multi-view RGB-D object dataset. In IEEE international conference on robotics and automation (ICRA), 2011 (pp. 1817–1824). IEEE.

  • Lai, K., Bo, L., Ren, X., & Fox, D. (2012). Detection-based object labeling in 3D scenes. In IEEE international conference on robotics and automation (ICRA), 2012 (pp. 1330–1337). IEEE.

  • Leibe, B., Leonardis, A., & Schiele, B. (2008). Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 77(1–3), 259–289.

    Article  Google Scholar 

  • Levinshtein, A., Stere, A., Kutulakos, K. N., Fleet, D. J., Dickinson, S. J., & Siddiqi, K. (2009). Turbopixels: Fast superpixels using geometric flows. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2290–2297.

    Article  Google Scholar 

  • Li, W. H., & Kleeman, L. (2011). Segmentation and modeling of visually symmetric objects by robot actions. The International Journal of Robotics Research, 30(9), 1124–1142.

    Article  Google Scholar 

  • Li, X., & Guskov, I. (2007) 3D object recognition from range images using pyramid matching. In IEEE 11th international conference on computer vision, 2007. ICCV 2007 (pp. 1–6). IEEE.

  • Maire, M., Arbeláez, P., Fowlkes, C., & Malik, J. (2008). Using contours to detect and localize junctions in natural images. In IEEE conference on computer vision and pattern recognition, 2008. CVPR 2008 (pp. 1–8). IEEE.

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087–1092.

    Article  Google Scholar 

  • Mishra, A.K., Shrivastava, A., & Aloimonos, Y. (2012). Segmenting “simple” objects using RGB-D. In IEEE international conference on robotics and automation (ICRA), 2012 (pp. 4406–4413). IEEE.

  • Papazov, C., Haddadin, S., Parusel, S., Krieger, K., & Burschka, D. (2012). Rigid 3D geometry matching for grasping of known objects in cluttered scenes. The International Journal of Robotics Research, 31(4), 538–553.

    Article  Google Scholar 

  • Papon, J., Abramov, A., Schoeler, M., & Worgotter, F. (2013). Voxel cloud connectivity segmentation-supervoxels for point clouds. In IEEE conference on computer vision and pattern recognition (CVPR), 2013 (pp. 2027–2034). IEEE.

  • Pepik, B., Stark, M., Gehler, P., & Schiele, B. (2012). Teaching 3D geometry to deformable part models. In IEEE conference on computer vision and pattern recognition (CVPR), 2012 (pp. 3362–3369). IEEE.

  • Rasolzadeh, B., Björkman, M., Huebner, K., & Kragic, D. (2010). An active vision system for detecting, fixating and manipulating objects in the real world. The International Journal of Robotics Research, 29(2–3), 133–154.

    Article  Google Scholar 

  • Ren, X., & Malik, J. (2003). Learning a classification model for segmentation. In Proceedings of the ninth IEEE international conference on computer vision, 2003 (pp. 10–17). IEEE.

  • Richtsfeld, A., Morwald, T., Prankl, J., Zillich, M., & Vincze, M. (2012). Segmentation of unknown objects in indoor environments. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2012 (pp. 4791–4796). IEEE.

  • Richtsfeld, A., Mörwald, T., Prankl, J., Zillich, M., & Vincze, M. (2014). Learning of perceptual grouping for object segmentation on RGB-D data. Journal of Visual Communication and Image Representation, 25(1), 64–73.

    Article  Google Scholar 

  • Rusu, R.B., Blodow, N., Marton, Z.C., & Beetz, M. (2009). Close-range scene segmentation and reconstruction of 3D point cloud maps for mobile manipulation in domestic environments. In IEEE/RSJ international conference on intelligent robots and systems, 2009. IROS 2009 (pp. 1–6). IEEE.

  • Rusu, R.B., Bradski, G., Thibaux, R., & Hsu, J. (2010). Fast 3D recognition and pose using the viewpoint feature histogram. In IEEE/RSJ international conference on intelligent robots and systems (IROS), 2010 (pp. 2155–2162). IEEE.

  • Shapiro, L., & Stockman, G. C. (2001). Computer vision (pp. 69–75). Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Shi, J., & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888–905.

    Article  Google Scholar 

  • Silberman, N., Hoiem, D., Kohli, P., & Fergus, R. (2012). Indoor segmentation and support inference from RGBD images. In Computer vision—ECCV 2012 (pp. 746–760). Springer.

  • Sun, M., Bradski, G., Xu, B.X., & Savarese, S. (2010). Depth-encoded hough voting for joint object detection and shape recovery. In Computer vision—ECCV 2010 (pp. 658–671). Springer.

  • Uckermann, A., Haschke, R., & Ritter, H. (2012). Real-time 3D segmentation of cluttered scenes for robot grasping. In 12th IEEE-RAS international conference on humanoid robots (Humanoids), 2012 (pp. 198–203). IEEE.

  • Vedaldi, A., & Soatto, S. (2008). Quick shift and kernel methods for mode seeking. In Computer vision—ECCV 2008 (pp. 705–718). Springer.

  • Veksler, O., Boykov, Y., & Mehrani, P. (2010). Superpixels and supervoxels in an energy optimization framework. In Computer vision—ECCV 2010 (pp. 211–224). Springer.

  • Weikersdorfer, D., Gossow, D., & Beetz, M. (2012). Depth-adaptive superpixels. In 21st international conference on pattern recognition (ICPR), 2012 (pp. 2087–2090). IEEE.

  • Xiang, Y., & Savarese, S. (2012). Estimating the aspect layout of object categories. In IEEE conference on computer vision and pattern recognition (CVPR), 2012 (pp. 3410–3417). IEEE.

Download references

Acknowledgments

This work was supported by Australian Research Council Grants: DP150100294, DP110102166, DE120102960.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Asif.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 37626 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asif, U., Bennamoun, M. & Sohel, F. Unsupervised segmentation of unknown objects in complex environments. Auton Robot 40, 805–829 (2016). https://doi.org/10.1007/s10514-015-9495-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-015-9495-3

Keywords

Navigation