Abstract
This paper reports on an active SLAM framework for performing large-scale inspections with an underwater robot. We propose a path planning algorithm integrated with visual SLAM that plans loop-closure paths in order to decrease navigation uncertainty. While loop-closing revisit actions bound the robot’s uncertainty, they also lead to redundant area coverage and increased path length. Our proposed opportunistic framework leverages sampling-based techniques and information filtering to plan revisit paths that are coverage efficient. We employ Gaussian process regression for modeling the prediction of camera registrations and use a two-step optimization procedure for selecting revisit actions. We show that the proposed method offers many benefits over existing solutions and good performance for bounding navigation uncertainty in long-term autonomous operations with hybrid simulation experiments and real-world field trials performed by an underwater inspection robot.

















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bailey, T., & Durrant-Whyte, H. (2006). Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics Automation Magazine, 13(3), 108–117.
Bajcsy, R. (1988). Active perception. Proceedings of the IEEE, 76(8), 996–1005.
Barkby, S., Williams, S. B., Pizarro, O., & Jakuba, M. V. (2011). Bathymetric SLAM with no map overlap using Gaussian processes. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1242–1248). San Francisco, CA.
Bourgault, F., Makarenko, A. A., Williams, S. B., Grocholsky, B., & Durrant-Whyte, H. F. (2002). Information based adaptive robotic exploration. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 540–545). Lausanne.
Bry, A., & Roy, N. (2011). Rapidly-exploring random belief trees for motion planning under uncertainty. In Proceedings of the IEEE international conference on robotics and automation (pp. 723–730). Shanghai.
Chaves, S. M., Kim, A., & Eustice, R. M. (2014). Opportunistic sampling-based planning for active visual SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 3073–3080). Chicago, IL.
Durrant-Whyte, H., & Bailey, T. (2006). Simultaneous localization and mapping: Part I. IEEE Robotics and Automation Magazine, 13(2), 99–110.
Eustice, R. M., Singh, H., & Leonard, J. J. (2006a). Exactly sparse delayed-state filters for view-based SLAM. IEEE Transactions on Robotics, 22(6), 1100–1114.
Eustice, R. M., Singh, H., Leonard, J. J., & Walter, M. R. (2006b). Visually mapping the RMS Titanic: Conservative covariance estimates for SLAM information filters. International Journal of Robotics Research, 25(12), 1223–1242.
Feder, H. J. S., Leonard, J. J., & Smith, C. M. (1999). Adaptive mobile robot navigation and mapping. International Journal of Robotics Research, 18(7), 650–668.
Galceran, E., Nagappa, S., Carreras, M., Ridao, P., & Palomer, A. (2013). Uncertainty-driven survey path planning for bathymetric mapping. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 6006–6012). Tokyo.
Gonzalez-Banos, H. H., & Latombe, J. C. (2002). Navigation strategies for exploring indoor environments. International Journal of Robotics Research, 21(10–11), 829–848.
Hand, D. J. (2008). Statistics: A very short introduction. Oxford: Oxford University Press.
Hollinger, G. A., & Sukhatme, G. S. (2014). Sampling-based robotic information gathering algorithms. International Journal of Robotics Research, 33(9), 1271–1287.
Hover, F. S., Eustice, R. M., Kim, A., Englot, B., Johannsson, H., Kaess, M., et al. (2012). Advanced perception, navigation and planning for autonomous in-water ship hull inspection. International Journal of Robotics Research, 31(12), 1445–1464.
Indelman, V., Carlone, L., & Dellaert, F. (2015). Planning in the continuous domain: A generalized belief space approach for autonomous navigation in unknown environments. International Journal of Robotics Research, 34(7), 849–882.
Kaess, M., Ranganathan, A., & Dellaert, F. (2008). iSAM: Incremental smoothing and mapping. IEEE Transactions on Robotics, 24(6), 1365–1378.
Kaess, M., Johannsson, H., Rosen, D., Carlevaris-Bianco, N., & Leonard, J. (2013) Open source implementation of iSAM. http://people.csail.mit.edu/kaess/isam
Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. International Journal of Robotics Research, 30(7), 846–894.
Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. (1996). Probabilistic roadmaps for path planning in high dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.
Kim, A., & Eustice, R. M. (2013). Real-time visual SLAM for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733.
Kim, A., & Eustice, R. M. (2015). Active visual SLAM for robotic area coverage: Theory and experiment. International Journal of Robotics Research, 34(4–5), 457–475.
LaValle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. International Journal of Robotics Research, 20(5), 378–400.
Melkumyan, A., & Ramos, F. (2009). A sparse covariance function for exact Gaussian process inference in large datasets. In Proceedings of the international joint conference on artifical intelligence (pp. 1936–1942). Pasadena, CA.
O’Callaghan, S. T., & Ramos, F. T. (2012). Gaussian process occupancy maps. International Journal of Robotics Research, 31(1), 42–62.
Olson, E. (2011). AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE international conference on robotics and automation (pp. 3400–3407). Shanghai.
Ozog, P., Carlevaris-Bianco, N., Kim, A., & Eustice, R. M. (2016). Long-term mapping techniques for ship hull inspection and surveillance using an autonomous underwater vehicle. Journal of Field Robotics, Special Issue on Safety, Security and Rescue Robotics, 33(3), 265–289.
Patil, S., Kahn, G., Laskey, M., Schulman, J., Goldberg, K., & Abbeel, P. (2014). Scaling up gaussian belief space planning through covariance-free trajectory optimization and automatic differentiation. In Proceedings of the international workshop on the algorithmic foundations of robotics, Istanbul.
Prentice, S., & Roy, N. (2009). The belief roadmap: Efficient planning in belief space by factoring the covariance. International Journal of Robotics Research, 28(11–12), 1448–1465.
Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge, MA: The MIT Press.
Sim, R., & Roy, N. (2005). Global a-optimal robot exploration in SLAM. In Proceedings of the IEEE international conference on robotics and automation (pp. 661–666). Barcelona.
Smith, R., Self, M., & Cheeseman, P. (1990). Estimating uncertain spatial relationships in robotics. In I. Cox & G. Wilfong (Eds.), Autonomous robot vehicles (pp. 167–193). New York: Springer.
Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-based exploration using Rao-Blackwellized particle filters. In Proceedings of the robotics: science & systems conference, Cambridge, MA.
Valencia, R., Andrade-Cetto, J., & Porta, J. (2011). Path planning in belief space with pose SLAM. In Proceedings of the IEEE international conference on robotics and automation (pp. 78–83). Shanghai.
Valencia, R., Miro, J., Dissanayake, G., & Andrade-Cetto, J. (2012). Active pose SLAM. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (pp. 1885–1891). Vilamoura.
Valencia, R., Morta, M., Andrade-Cetto, J., & Porta, J. (2013). Planning reliable paths with pose SLAM. IEEE Transactions on Robotics, 29(4), 1050–1059.
van den Berg, J., Patil, S., & Alterovitz, R. (2012). Motion planning under uncertainty using iterative local optimization in belief space. International Journal of Robotics Research, 31(11), 1263–1278.
Whaite, P., & Ferrie, F. (1997). Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(3), 193–205.
Acknowledgments
This work was supported by the Office of Naval Research under award N00014-12-1-0092, monitored by Dr. T. Swean and T. Kick. We would like to thank J. Vaganay from Bluefin Robotics and P. Ozog for their support during testing. S. Chaves was supported by The SMART Scholarship for Service Program by the Department of Defense.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 86614 KB)
Rights and permissions
About this article
Cite this article
Chaves, S.M., Kim, A., Galceran, E. et al. Opportunistic sampling-based active visual SLAM for underwater inspection. Auton Robot 40, 1245–1265 (2016). https://doi.org/10.1007/s10514-016-9597-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-016-9597-6