Skip to main content
Log in

A human inspired handover policy using Gaussian Mixture Models and haptic cues

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A handover strategy is proposed that aims at natural and fluent robot to human object handovers. For the approaching phase, a globally asymptotically stable dynamical system (DS) is utilized, trained from human demonstrations and exploiting the existence of mirroring in the human wrist motion. The DS operates in the robot task space thus achieving independence with respect to the robot platform, encapsulating the position and orientation of the human wrist within a single DS. It is proven that the motion generated by such a DS, having as target the current wrist pose of the receiver’s hand, is bounded and converges to the previously unknown handover location. Haptic cues based on load estimates at the robot giver ensure full object load transfer before grip release. The proposed strategy is validated with simulations and experiments in real settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Amin, T.B., & Mahmood, I. (2008). Speech recognition using dynamic time warping. In 2nd International conference on advances in space technologies (pp. 74–79).

  • Arimoto, S. (2008). Control theory of multi-fingered hands: A modelling and analytical-mechanics approach for dexterity and intelligence. London: Springer.

    Google Scholar 

  • Ben Amor, H., Neumann, G., Kamthe, S., Kroemer, O., & Peters, J. (2014). Interaction primitives for human-robot cooperation tasks. In IEEE International Conference on Robotics and Automation (ICRA) (pp. 2831–2837). IEEE (Online). Available http://ieeexplore.ieee.org/document/6907265/.

  • Bischoff, R., & Guhl, T. (2010). The strategic research agenda for robotics in Europe [industrial activities]. IEEE Robotics Automation Magazine, 17(1), 15–16.

    Article  Google Scholar 

  • Cakmak, M., Srinivasa, S. S., Lee, M. K., Forlizzi, J., & Kiesler, S. (2011). Human preferences for robot-human hand-over configurations. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp 1986–1993).

  • Calinon, S., D’halluin, F., Sauser, E. L., Caldwell, D. G., & Billard, A. G. (2010). Learning and reproduction of gestures by imitation. IEEE Robotics Automation Magazine, 17(2), 44–54.

    Article  Google Scholar 

  • Chan, W. P., Parker, C. A., Van der Loos, H. M., & Croft, E. A. (2012). Grip forces and load forces in handovers. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction: HRI ’12 (pp. 9–16).

  • Chan, W. P., Parker, C. A., Van der Loos, H. M., & Croft, E. a. (2013). A human-inspired object handover controller. The International Journal of Robotics Research, 32(8), 971–983.

    Article  Google Scholar 

  • Fulling, S. A., Sinyakov, M. N., & Tishchenko, S. V. (2011). Linearity and the mathematics of several variables. Singapore: World Scientific.

    Google Scholar 

  • Gribovskaya, E., & Billard, A. (2009). Learning nonlinear multi-variate motion dynamics for real-time position and orientation control of robotic manipulators. In 9th IEEE-RAS International Conference on Humanoid Robots (pp. 472–477).

  • Gribovskaya, E., Khansari-Zadeh, S., & Billard, A. (2011). Learning non-linear multivariate dynamics of motion in robotic manipulators. The International Journal of Robotics Research, 30(1), 80–117.

    Article  Google Scholar 

  • Hersch, M., Guenter, F., Calinon, S., & Billard, A. (2008). Dynamical system modulation for robot learning via kinesthetic demonstrations. IEEE Transactions on Robotics, 24(6), 1463–1467.

    Article  Google Scholar 

  • Huber, M., Rickert, M., Knoll, A., Brandt, T., & Glasauer, S. (2008). Human–robot interaction in handing-over tasks. In RO-MAN 2008: The 17th IEEE International Symposium on Robot and Human Interactive Communication (pp. 107–112). IEEE.

  • Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2002). Movement imitation with nonlinear dynamical systems in humanoid robots. Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), 2, 1398–1403.

    Article  Google Scholar 

  • Khansari Zadeh, S. M., & Billard, A. (2009). Learning and control of uav maneuvers based on demonstrations. Presented at Robotics Science and Systems, Seattle, June 28 July 1, 2009.

  • Khansari-Zadeh, S. M., & Billard, A. (2010). Imitation learning of globally stable non-linear point-to-point robot motions using nonlinear programming. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2676–2683).

  • Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.

    Article  Google Scholar 

  • Kupcsik, A., Hsu, D., & Lee, W. S. (2015). Learning dynamic robot-to-human object handover from human feedback. In International Symposium on Robotics Research (pp. 1–11) (Online). Available http://arxiv.org/abs/1603.06390.

  • Lang, M., Kleinsteuber, M., Dunkley, O., & Hirche, S. (2015). Gaussian process dynamical models over dual quaternions. In European Control Conference (ECC) (pp. 2847–2852).

  • Mason, A. H., & MacKenzie, C. L. (2005). Grip forces when passing an object to a partner. Experimental Brain Research, 163(2), 173–187.

    Article  Google Scholar 

  • Medina, J. R., Duvallet, F., Karnam, M., & Billard, A. (2016). A human-inspired controller for fluid human-robot handovers. In Conference: 2016 IEEE-RAS International Conference on Humanoid Robots.

  • Murray, R., & Sastry, S. (1994). A mathematical introduction to robotic manipulation. Boca Raton: CRC Press.

    MATH  Google Scholar 

  • Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and generalization of motor skills by learning from demonstration. In IEEE International Conference on Robotics and Automation (pp. 763–768).

  • Pastor, P., Kalakrishnan, M., Meier, F., Stulp, F., Buchli, J. Theodorou, E., & Schaal, S. (2012). From dynamic movement primitives to associative skill memories. Robotics and Autonomous Systems.

  • Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online movement adaptation based on previous sensor experiences. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 365–371).

  • Prada, M., & Remazeilles, A. (2012). Dynamic movement primitives for human robot interaction. In IEEE/RSJ IROS, workshop on robot motion planning: online, reactive and in Real-time, Algarve, Portugal.

  • Prada, M., Remazeilles, A., Koene, A., & Endo, S. (2013). Dynamic movement primitives for human-robot interaction: Comparison with human behavioral observation. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1168–1175).

  • Prada, M., Remazeilles, A., Koene, A., & Endo, S. (2014). Implementation and experimental validation of dynamic movement primitives for object handover. In IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2146–2153).

  • Psomopoulou, E., & Doulgeri, Z. (2014). A robot hand-over control scheme for human-like haptic interaction. In 22nd Mediterranean conference of control and automation (MED) (pp. 1470–1475).

  • Psomopoulou, E., & Doulgeri, Z. (2015). A human inspired stable object load transfer for robots in hand-over tasks. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 491–496).

  • Shukla, A., & Billard, A. (2012). Coupled dynamical system based armhand grasping model for learning fast adaptation strategies. Robotics and Autonomous Systems, 60(3), 424 – 440. Autonomous Grasping (Online). Available http://www.sciencedirect.com/science/article/pii/S0921889011001576.

  • Siciliano, B., Sciavico, L., Villani, L., & Oriolo, J. (2010). Robotics: modeling, planning and control. London: Springer-Verlag Limited.

    Google Scholar 

  • Silverio, J., Rozo, L., Calinon, S., & Caldwell, D. G. (2015). Learning bimanual end-effector poses from demonstrations using task-parameterized dynamical systems. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (Vol. 2015, pp. 464–470). IEEE.

  • Sisbot, E. A., Marin-Urias, L. F., Broquère, X., Sidobre, D., & Alami, R. (2010). Synthesizing robot motions adapted to human presence. International Journal of Social Robotics, 2(3), 329–343. https://doi.org/10.1007/s12369-010-0059-6.

  • Strabala, K., Lee, M. K., Dragan, A., Forlizzi, J., Srinivasa, S., Cakmak, M., et al. (2013). Towards seamless human-robot handovers. Journal of Human-Robot Interaction, 1(1), 1–23.

    Google Scholar 

  • Ude, A., Nemec, B., Petri, T., & Morimoto, J. (2014). Orientation in Cartesian space dynamic movement primitives. In IEEE International conference on robotics and automation (ICRA) (pp. 2997–3004).

  • Waldhart, J., Gharbi, M., & Alami, R. (2015). Planning handovers involving humans and robots in constrained environment. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 6473–6478).

  • Wang, R., Wu, Y., Chan, W. L., & Tee, K. P. (2016). Dynamic movement primitives plus: For enhanced reproduction quality and efficient trajectory modification using truncated kernels and local biases. In IEEE/RSJ International conference on intelligent robots and systems (IROS) (pp. 3765–3771).

  • Widmann, D. (2016). An adaptive control approach based on dynamic movement primitives for human-robot handover. Masters thesis in Systems, Control and Mechatronics, Chalmers University of Technology, Department of Signals and Systems, Gothenburg, Sweden.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zoe Doulgeri.

Additional information

This is one of the several papers published in Autonomous Robots comprising the Special Issue on Learning for Human-Robot Collaboration.

The research leading to these results has received funding from the European Community’s Framework Programme Horizon 2020 under Grant Agreement No 643433 RAMCIP.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 79014 KB)

Appendix: Unit quaternion preliminaries

Appendix: Unit quaternion preliminaries

A four-parameter representation of the orientation is the unit quaternion defined as \(Q=\begin{bmatrix} \eta&\epsilon ^T\end{bmatrix}^T\) with \(\eta \in \mathfrak {R}\) being the scalar part and \(\epsilon \in \mathfrak {R}^3\) the vector part and which are related with the angle-axis representation of orientation, \(r \in \mathfrak {R}^3, \ \theta \in \mathfrak {R}\) as follows:

$$\begin{aligned} \eta= & {} \cos \frac{\theta }{2} \end{aligned}$$
(21)
$$\begin{aligned} \epsilon= & {} r\sin \frac{\theta }{2} \end{aligned}$$
(22)

Notice that utilizing the angle-axis representation, one specific rotation can be expressed with two different ways: a rotation by \(-\theta \) around \(-r\) or a rotation by \(\theta \) around r. On the contrary, utilizing the quaternion representation there is a unique expression for each rotation (Siciliano et al. 2010). The following properties hold for unit quaternions:

$$\begin{aligned} Q^TQ= & {} 1 \end{aligned}$$
(23)
$$\begin{aligned} Q^T\dot{Q}= & {} 0 \end{aligned}$$
(24)
$$\begin{aligned} Q^{-1}= & {} \begin{bmatrix}\eta \\ -\epsilon \end{bmatrix} \end{aligned}$$
(25)

Composition of unit quaternions \(Q_1 = \begin{bmatrix}\eta _1&\epsilon _1^T\end{bmatrix}^T\) and \(Q_2 = \begin{bmatrix}\eta _2&\epsilon _2^T\end{bmatrix}^T\), denoted by the operator \(*\), yields the unit quaternion corresponding to the respective rotation matrix product \(R_1R_2\) where \(R_1, R_2 \in SO(3)\):

$$\begin{aligned} Q_1*Q_2 = \begin{bmatrix} \eta _1\eta _2-\epsilon _1^T\epsilon _2 \\ \eta _1\epsilon _2+\eta _2\epsilon _1+\epsilon _1\times \epsilon _2 \end{bmatrix} \end{aligned}$$
(26)

Given the current and desired rotation matrices \(R \in SO(3)\), \(R_d \in SO(3)\) as well as the respective quaternions Q, \(Q_d\), the relative rotation \(RR_d^T\), can be defined in terms of the quaternion \(\varDelta Q=\begin{bmatrix}\varDelta \eta&\varDelta \epsilon ^T\end{bmatrix}^T\) as follows:

$$\begin{aligned} \varDelta Q = Q*Q_d^{-1} \end{aligned}$$
(27)

Notice that \(\varDelta Q = \begin{bmatrix}1&0_{1\times 3}\end{bmatrix}^T\) if and only if \(R_d = R\).

Unit quaternion time derivatives are related to the angular velocity \(\omega \) expressed in the inertia frame as follows (equations (3.94)-(3.95) from Siciliano et al. (2010)):

$$\begin{aligned} \begin{aligned} \dot{\eta }&= -\frac{1}{2}\epsilon ^T\omega \\ \dot{\epsilon }&= \frac{1}{2}\left( \eta I_3 - \hat{\epsilon }\right) \omega \end{aligned} \end{aligned}$$
(28)

which can be written compactly as:

$$\begin{aligned} \dot{Q} = \frac{1}{2}J_Q\omega \end{aligned}$$
(29)

where

$$\begin{aligned} J_Q = \left[ \begin{array}{c} -\epsilon ^T \\ \eta I_3 - \hat{\epsilon } \end{array} \right] \in \mathfrak {R}^{4\times 3}. \end{aligned}$$
(30)

Given (26)–(27), a minimal representation of the orientation error \(e_o \in \mathfrak {R}^3\) can be defined via the vector part of the quaternion error as follows:

$$\begin{aligned} e_o \triangleq \varDelta \epsilon = \eta _d\epsilon - \eta \epsilon _d - \hat{\epsilon }\epsilon _d \end{aligned}$$
(31)

with \(\hat{\epsilon }\) denoting the skew symmetric matrix of vector \(\epsilon \). Notice that (31) can be written as:

$$\begin{aligned} e_o = -J_Q^T Q_d \end{aligned}$$
(32)

Substituting (29) in (24) yields \(J_Q^T Q = 0\); thus, \(e_o\) can be written also in the following form:

$$\begin{aligned} e_o = J_Q^T\left( Q-Q_d\right) . \end{aligned}$$
(33)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sidiropoulos, A., Psomopoulou, E. & Doulgeri, Z. A human inspired handover policy using Gaussian Mixture Models and haptic cues. Auton Robot 43, 1327–1342 (2019). https://doi.org/10.1007/s10514-018-9705-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9705-x

Keywords

Navigation