Skip to main content

Advertisement

Log in

Finding optimal feasible global plans for multiple teams of heterogeneous robots using hybrid reasoning: an application to cognitive factories

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

We consider cognitive factories with multiple teams of heterogenous robots, and address two key challenges of these domains, hybrid reasoning for each team and finding an optimal global plan (with minimum makespan) for multiple teams. For hybrid reasoning, we propose modeling each team’s workspace taking into account capabilities of heterogeneous robots, embedding continuous external computations into discrete symbolic representation and reasoning, not only optimizing the makespans of local plans but also minimizing the total cost of robotic actions. To find an optimal global plan, we propose a semi-distributed approach that does not require exchange of information between teams but yet achieves on an optimal coordination of teams that can help each other. We prove that the optimal coordination problem is NP-complete, and describe a solution using automated reasoners. We experimentally evaluate our methods, and show their applications on a cognitive factory with dynamic simulations and a physical implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Alami, R., Ingrand, F., & Qutub, S. (1998). A scheme for coordinating multi-robots planning activities and plans execution. In Proceedings of ECAI.

  • Bonisoli, A., Gerevini, A. E., Saetti, A., & Serina, I. (2014). A privacy-preserving model for the multi-agent propositional planning problem. In Proceedings of ECAI (pp. 973–974).

  • Brafman, R. I. (2015). A privacy preserving algorithm for multi-agent planning and search. In Proceedings of IJCAI (pp. 1530–1536).

  • Brafman, R. I., & Domshlak, C. (2008). From one to many: Planning for loosely coupled multi-agent systems. In Proceedings of ICAPS (pp. 28–35).

  • Brewka, G., Eiter, T., & Truszczynski, M. (2011). Answer set programming at a glance. Communications of the ACM, 54(12), 92–103.

    Article  Google Scholar 

  • Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., & Patoglu, V. (2009). Bridging the gap between high-level reasoning and low-level control. In Proceedings of LPNMR.

  • Canny, J. F. (1988). The complexity of robot motion planning. Cambridge, MA: MIT Press.

    MATH  Google Scholar 

  • Chevaleyre, Y., Dunne, P. E., Endriss, U., Lang, J., Lemaître, M., Maudet, N., et al. (2006). Issues in multiagent resource allocation. Informatica, 30(1), 3–31.

    MATH  Google Scholar 

  • Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki, L. E. (2016). Incremental task and motion planning: A constraint-based approach. In Proceedings of RSS.

  • Dantsin, E., Eiter, T., Gottlob, G., & Voronkov, A. (2001). Complexity and expressive power of logic programming. ACM Computing Surveys, 33(3), 374–425.

    Article  Google Scholar 

  • de Weerdt, M., & Clement, B. (2009). Introduction to planning in multiagent systems. Multiagent and Grid Systems, 5, 345–355.

    Article  Google Scholar 

  • Decker, K., & Lesser, V. (1994). Designing a family of coordination algorithms. In Proceedings of DAI (pp. 65–84).

  • Desaraju, V. R., & How, J. P. (2012). Decentralized path planning for multi-agent teams with complex constraints. Autonomous Robots, 32(4), 385–403.

    Article  Google Scholar 

  • Diankov, R. (2010). Automated construction of robotic manipulation programs. Ph.D. thesis, Carnegie Mellon University, Robotics Institute.

  • Dovier, A., Formisano, A., & Pontelli, E. (2009). An empirical study of constraint logic programming and answer set programming solutions of combinatorial problems. Journal of Experimental and Theoretical Artificial Intelligence, 21(2), 79–121.

    Article  MATH  Google Scholar 

  • Duff, D. J., Erdem, E., & Patoglu, V. (2013). Integration of 3D object recognition and planning for robotic manipulation: A preliminary report. In Proceedings ICLP 2013 workshop on knowledge representation and reasoning in robotics.

  • Ehtamo, H., Hamalainen, R. P., Heiskanen, P., Teich, J., Verkama, M., & Zionts, S. (1999). Generating pareto solutions in a two-party setting: Constraint proposal methods. Management Science, 45(12), 1697–1709.

    Article  MATH  Google Scholar 

  • Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005). A uniform integration of higher-order reasoning and external evaluations in answer-set programming. In Proceedings of IJCAI (pp. 90–96).

  • Erdem, E., Aker, E., & Patoglu, V. (2012a). Answer set programming for collaborative housekeeping robotics: Representation, reasoning, and execution. Intelligent Service Robotics, 5(4), 275–291.

    Article  Google Scholar 

  • Erdem, E., Gelfond, M., & Leone, N. (2016a). Applications of answer set programming. AI Magazine, 37(3), 53–68.

    Article  Google Scholar 

  • Erdem, E., Haspalamutgil, K., Palaz, C., Patoglu, V., & Uras, T. (2011). Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation. In Proceedings of ICRA.

  • Erdem, E., Haspalamutgil, K., Patoglu, V., & Uras, T. (2012b). Causality-based planning and diagnostic reasoning for cognitive factories. In Proceedings of IEEE international conference on emerging technologies and factory automation (ETFA).

  • Erdem, E., Patoglu, V., Saribatur, Z. G., Schüller, P., & Uras, T. (2013). Finding optimal plans for multiple teams of robots through a mediator: A logic-based approach. Theory and Practice of Logic Programming, 13(4–5), 831–846.

    Article  MathSciNet  MATH  Google Scholar 

  • Erdem, E., Patoglu, V., & Schüller, P. (2016b). A systematic analysis of levels of integration between high-level task planning and low-level feasibility checks. AI Communications, 29(2), 319–349.

    Article  MathSciNet  Google Scholar 

  • Erol, K., Nau, D. S., & Subrahmanian, V. S. (1995). Complexity, decidability and undecidability results for domain-independent planning. Artificial Intelligence, 76(1–2), 75–88.

    Article  MathSciNet  MATH  Google Scholar 

  • Finger, J. (1986). Exploiting constraints in design synthesis. Ph.D. thesis, Stanford University.

  • Foulser, D., Li, M., & Yang, Q. (1992). Theory and algorithms for plan merging. Artificial Intelligence, 57, 143–182.

    Article  MathSciNet  MATH  Google Scholar 

  • Gaschler, A., Petrick, R. P. A., Giuliani, M., Rickert, M., & Knoll, A. (2013). KVP: A knowledge of volumes approach to robot task planning. In Proceedings of IROS (pp. 202–208).

  • Gaston, M. E., & desJardins, M. (2008). The effect of network structure on dynamic team formation in multi-agent systems. Computational Intelligence, 24(2), 122–157.

    Article  MathSciNet  Google Scholar 

  • Gebser, M., Kaufmann, B., Neumann, A., & Schaub, T. (2007). clasp: A conflict-driven answer set solver. In Proceedings of LPNMR.

  • Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive databases. New Generation Computing, 9, 365–385.

    Article  MATH  Google Scholar 

  • Georgeff, M. P. (1988). Communication and interaction in multi-agent planning. In Proceedings of DAI (pp. 200–204).

  • Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal theories. Artificial Intelligence, 153, 49–104.

    Article  MathSciNet  MATH  Google Scholar 

  • Gombolay, M. C., Wilcox, R. J., & Shah, J. A. (2013). Fast scheduling of multi-robot teams with temporospatial constraints. In Proceedings of RSS.

  • Gravot, F., Cambon, S., & Alami, R. (2005). Robotics research the eleventh international symposium. In Springer tracts in advanced robotics, vol. 15, chap. aSyMov: A Planner That Deals with Intricate Symbolic and Geometric Problems (pp. 100–110). Springer.

  • Hauser, K., & Latombe, J. C. (2009). Integrating task and PRM motion planning: Dealing with many infeasible motion planning queries. In Workshop on bridging the gap between task and motion planning at ICAPS.

  • Havur, G., Haspalamutgil, K., Palaz, C., Erdem, E., & Patoglu, V. (2013). A case study on the tower of hanoi challenge: Representation, reasoning and execution. In Proceedings of ICRA.

  • Havur, G., Ozbilgin, G., Erdem, E., & Patoglu, V. (2014). Geometric rearrangement of multiple movable objects on cluttered surfaces: A hybrid reasoning approach. In Proceedings of ICRA (pp. 445–452).

  • Hertle, A., Dornhege, C., Keller, T., & Nebel, B. (2012). Planning with semantic attachments: An object-oriented view. In Proceedings of ECAI (pp. 402–407).

  • Hooker, J. (2005). A hybrid method for the planning and scheduling. Constraints, 10(4), 385–401.

    Article  MathSciNet  MATH  Google Scholar 

  • Kaelbling, L. P., & Lozano-Pérez, T. (2013). Integrated task and motion planning in belief space. International Journal of Robotics Research, 32(9–10), 1194–1227.

    Article  Google Scholar 

  • Kavraki, L., Svestka, P., Latombe, J., & Overmars, M. (1996). Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Transactions on Robotics and Automation, 12(4), 566–580.

    Article  Google Scholar 

  • Kuffner Jr., J. J., & Lavalle, S. M. (2000b). RRT-Connect: An efficient approach to single-query path planning. In Proceedings of ICRA (pp. 995–1001).

  • Kuffner Jr., J., & LaValle, S. (2000a). RRT-connect: An efficient approach to single-query path planning. In Proceedings of ICRA (pp. 995–1001).

  • Lagriffoul, F., Dimitrov, D., Bidot, J., Saffiotti, A., & Karlsson, L. (2014). Efficiently combining task and motion planning using geometric constraints. International Journal of Robotics Research, 33(14), 1726–1747.

    Article  Google Scholar 

  • Latombe, J. C. (1991). Robot motion planning. Dordrecht: Kluwer Academic.

    Book  MATH  Google Scholar 

  • LaValle, S., & Hutchinson, S. (1998). Optimal motion planning for multiple robots having independent goals. IEEE Transactions on Robotics and Automation, 14(6), 912–925.

    Article  Google Scholar 

  • Lin, S. H. (2011). Coordinating time-constrained multi-agent resource sharing with fault detection. In Proceedings of IEEM (pp. 1000–1004).

  • Luo, L., Chakraborty, N., & Sycara, K. (2013). Distributed algorithm design for multi-robot task assignment with deadlines for tasks. In Proceedings of ICRA.

  • Maliah, S., Shani, G., & Stern, R. (2014). Privacy preserving landmark detection. In Proceedings of ECAI (pp. 597–602).

  • McCarthy, J. (1980). Circumscription—a form of non-monotonic reasoning. Artificial Intelligence, 13(27–39), 171–172.

    Article  MathSciNet  MATH  Google Scholar 

  • McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of artificial intelligence. In B. Meltzer & D. Michie (Eds.), Machine intelligence (Vol. 4, pp. 463–502). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Nair, R., Tambe, M., & Marsella, S. (2002). Team formation for reformation in multiagent domains like robocuprescue. In Proceedings of RoboCup (pp. 150–161).

  • Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., & Barry, M. (2001). An A-Prolog decision support system for the space shuttle. In Proceedings of PADL (pp. 169–183).

  • Plaku, E., & Hager, G. D. (2010). Sampling-based motion and symbolic action planning with geometric and differential constraints. In Proceedings of ICRA (pp. 5002–5008).

  • Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., et al. (2012). Team-building with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Programming, 12(3), 361–381.

    Article  MathSciNet  MATH  Google Scholar 

  • Saribatur, Z. G., Erdem, E., & Patoglu, V. (2014). Cognitive factories with multiple teams of heterogeneous robots: Hybrid reasoning for optimal feasible global plans. In Proceedings of IROS (pp. 2923–2930).

  • Shoham, Y., & Tennenholtz, M. (1995). On social laws for artificial agent societies:Off-line design. Artificial Intelligence, 73, 231–252.

    Article  Google Scholar 

  • Srivastava, S., Fang, E., Riano, L., Chitnis, R., Russell, S., & Abbeel, P. (2014). Combined task and motion planning through an extensible planner-independent interface layer. In Proceedings of ICRA (pp. 639–646).

  • Stuart, C. (1985). An implementation of a multi-agent plan synchronizer. In Proceedings of IJCAI (pp. 1031–1033).

  • Sucan, I. A., Moll, M., & Kavraki, L. E. (2012). The open motion planning library. IEEE Robotics and Automation Magazine, 19(4), 72–82.

    Article  Google Scholar 

  • Sycara, K. P., Roth, S. P., Sadeh, N. M., & Fox, M. S. (1991). Resource allocation in distributed factory scheduling. IEEE Expert, 6(1), 29–40.

    Article  Google Scholar 

  • Tan, W., & Khoshnevis, B. (2000). Integration of process planning and scheduling—a review. Journal of Intelligent Manufacturing, 11(1), 51–63.

    Article  Google Scholar 

  • ter Mors, A., Valk, J., & Witteveen, C. (2004). Coordinating autonomous planners. In Proceedings of IC-AI (pp. 795–801).

  • Tiihonen, J., Soininen, T., & Sulonen, R. (2003). A practical tool for mass-customising configurable products. In Proceedings of the international conference on engineering design (pp. 1290–1299).

  • Torreño, A., Onaindia, E., & Sapena, O. (2012). An approach to multi-agent planning with incomplete information. In Proceedings of ECAI (pp. 762–767).

  • Torreño, A., Sapena, O., & Onaindia, E. (2015). Global heuristics for distributed cooperative multi-agent planning. In Proceedings of ICAPS (pp. 225–233).

  • Trejo, R., Galloway, J., Sachar, C., Kreinovich, V., Baral, C., & Tuan, L. C. (2001). From planning to searching for the shortest plan: An optimal transition. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 9(6), 827–837.

    MATH  Google Scholar 

  • Turpin, M., Michael, N., & Kumar, V. (2013). Concurrent assignment and planning of trajectories for large teams of interchangeable robots. In Proceedings of ICRA (pp. 842–848).

  • Velagapudi, P., Sycara, K. P., & Scerri, P. (2010). Decentralized prioritized planning in large multirobot teams. In Proceedings of IROS (pp. 4603–4609).

  • Weyhrauch, R. W. (1978). Prolegomena to a theory of formal reasoning. Tech. rep.: Stanford University.

  • Wolfe, J., Marthi, B., & Russell, S. (2010). Combined task and motion planning for mobile manipulation. In Proceedings of ICAPS (pp. 254–258).

  • Yang, Q., Nau, D. S., & Hendler, J. (1992). Merging separately generated plans with restricted interactions. Computational Intelligence, 8, 648–676.

    Article  Google Scholar 

  • Zaeh, M., Beetz, M., Shea, K., Reinhart, G., Bender, K., Lau, C., Ostgathe, M., Vogl, W., Wiesbeck, M., Engelhard, M., Ertelt, C., Rühr, T., Friedrich, M., & Herle, S. (2009). The cognitive factory. In Changeable and reconf. manufacturing systems (pp. 355–371).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Erdem.

Additional information

This work is partially supported by Scientific and Technological Research Council of Turkey (TUBITAK) Grant 111E116. Z. G. Saribatur’s work was carried out during her graduate studies at Sabancı University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saribatur, Z.G., Patoglu, V. & Erdem, E. Finding optimal feasible global plans for multiple teams of heterogeneous robots using hybrid reasoning: an application to cognitive factories. Auton Robot 43, 213–238 (2019). https://doi.org/10.1007/s10514-018-9721-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-018-9721-x

Keywords

Navigation