Skip to main content
Log in

Horizon-based lazy optimal RRT for fast, efficient replanning in dynamic environment

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Planning of collision-free trajectory for robot motion under hard constraints and unpredictable environment is a difficult issue. To cope with this problem, this paper presents a novel replanning method based on receding horizon control and asymptotically optimal single-query motion planning. The approach, called the horizon-based lazy optimal rapidly-exploring random tree algorithm, enables real-time replanning in both static and dynamic environment with updated information. Previous feasible solutions are fully considered to generate new plans. Contributions include lazy steering and lazy collision checking search tree, forward tree pruning and sampling distribution online learning. The techniques are proven to be efficient, near optimal and fast responsive to change. Moreover, three experiments are performed to test the properties of the proposed algorithm numerically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Arslan, O., Berntorp, K., & Tsiotras, P. (2017). Sampling-based algorithms for optimal motion planning using closed-loop prediction. In IEEE international conference on robotics and automation (pp. 4991–4996).

  • Arslan, O., & Tsiotras, P. (2013). Use of relaxation methods in sampling-based algorithms for optimal motion planning. In IEEE international conference on robotics and automation (pp. 2421–2428).

  • Arslan, O., & Tsiotras, P. (2015). Machine learning guided exploration for sampling-based motion planning algorithms. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2646–2652). IEEE.

  • Bekris, K. E., & Kavraki, L. E. (2007). Greedy but safe replanning under kinodynamic constraints. In IEEE international conference on robotics and automation (pp. 704–710).

  • Bialkowski, J., Otte, M., & Frazzoli, E. (2013). Free-configuration biased sampling for motion planning. In IEEE/RSJ international conference on intelligent robots and systems (pp. 1272–1279). IEEE.

  • Bishop, C. M. (2006). Pattern recognition and machine learning. New York: Academic Press.

    MATH  Google Scholar 

  • Boor, V., Overmars, M. H., & Van Der Stappen, A. F. (1999). The Gaussian sampling strategy for probabilistic roadmap planners. In ICRA (pp. 1018–1023).

  • Bruce, J., & Veloso, M. (2002). Real-time randomized path planning for robot navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems, 3, 2383–2388.

    Article  Google Scholar 

  • Bryant, C., & Michael, A. G. (2017). Online \({\text{RRT}^{*}}\) and online \({\text{ FMT }^{*}}\): Rapid replanning with dynamic cost. In IEEE/RSJ international conference on intelligent robots and systems (pp. 6313–6318).

  • Chaves, S. M., Kim, A., Galceran, E., & Eustice, R. M. (2016). Opportunistic sampling-based active visual slam for underwater inspection. Autonomous Robots, 40(7), 1–21.

    Article  Google Scholar 

  • Clohessy, W. H. (1960). Terminal guidance system for satellite rendezvous. Aerospace Science & Technology, 27(9), 145–165.

    MATH  Google Scholar 

  • Desaraju, V. R., & How, J. P. (2012). Decentralized path planning for multi-agent teams with complex constraints. Autonomous Robots, 32(4), 385–403.

    Article  Google Scholar 

  • Ferguson, D., & Stentz, A. (2006). Anytime RRTs. In IEEE/RSJ international conference on intelligent robots and systems (pp. 5369–5375). IEEE.

  • Gammell, J. D., Srinivasa, S. S., & Barfoot, T. D. (2014). Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic. In 2014 IEEE/RSJ international conference on intelligent robots and systems (pp. 2997–3004). IEEE.

  • Gammell, J. D., Srinivasa, S. S., & Barfoot,T. D. (2015). Batch informed trees (bit*): Sampling-based optimal planning via the heuristically guided search of implicit random geometric graphs. In 2015 IEEE international conference on robotics and automation (ICRA) (pp. 3067–3074). IEEE.

  • Gayle, R., Klingler, K. R., & Xavier, P. G. (2008). Lazy reconfiguration forest (\(\rm LRF\))—An approach for motion planning with multiple tasks in dynamic environments. In IEEE international conference on robotics and automation (pp. 1316–1323).

  • Hauser, K. (2012). On responsiveness, safety, and completeness in real-time motion planning. Autonomous Robots, 32(1), 35–48.

    Article  Google Scholar 

  • Hauser, K. (2015). Lazy collision checking in asymptotically-optimal motion planning. In IEEE international conference on robotics & automation (pp. 2951–2957).

  • Ichter, B., Harrison, J., & Pavone, M. (2018). Learning sampling distributions for robot motion planning. In IEEE international conference on robotics and automation (ICRA) (pp. 7087–7094). IEEE.

  • Jeon, J. H., Karaman, S., & Frazzoli, E. (2015). Optimal sampling-based feedback motion trees among obstacles for controllable linear systems with linear constraints. In IEEE international conference on robotics and automation (pp. 4195–4201).

  • Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for optimal motion planning. The International Journal of Robotics Research, 30(7), 846–894.

    Article  Google Scholar 

  • Karaman, S., Walter, M. R., Perez, A., & Frazzoli, E. (2011). Anytime motion planning using the \({\text{ RRT }^*}\). In IEEE international conference on robotics and automation (pp. 1478–1483).

  • Kobilarov, M. (2012). Cross-entropy motion planning. The International Journal of Robotics Research, 31(7), 855–871.

    Article  Google Scholar 

  • Kobilarov, M., & Pellegrino, S. (2014). Trajectory planning for cubesat short-time-scale proximity operations. Journal of Guidance Control & Dynamics, 37(2), 566–579.

    Article  Google Scholar 

  • Kuwata, Y., Teo, J., Karaman, S., Fiore, G., Frazzoli, E., & How, J. (2008). Motion planning in complex environments using closed-loop prediction. In Proceedings of AIAA guidance navigation & control conference & exhibit (pp. 1–23).

  • Lavalle, S. M. (2006). Planning algorithms. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Lavalle, S. M., & Kuffner, J. J, Jr. (1999). Randomized kinodynamic planning. The International Journal of Robotics Research, 15(5), 378–400.

    Article  Google Scholar 

  • Li, T. Y., & Shie, Y. C. (2002). An incremental learning approach to motion planning with roadmap management. In IEEE international conference on robotics and automation (Vol. 4, pp. 3411–3416).

  • Li, Y., Littlefield, Z., & Bekris, K. E. (2014). Asymptotically optimal sampling-based kinodynamic planning. The International Journal of Robotics Research, 35(5), 528–564.

    Article  Google Scholar 

  • Lindemann, S. R., & Lavalle, S. M. (2005). Current issues in sampling-based motion planning. Springer Tracts in Advanced Robotics, 15, 36–54.

    Article  Google Scholar 

  • Mclachlan, G. J., Bean, R. W., & Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18(3), 413–422.

    Article  Google Scholar 

  • Otte, M., & Correll, N. (2013). C-forest: Parallel shortest path planning with superlinear speedup. IEEE Transactions on Robotics, 29(3), 798–806.

    Article  Google Scholar 

  • Otte, M., & Frazzoli, E. (2016). \({\text{ RRT }}^{\times }\): Asymptotically optimal single-query sampling-based motion planning with quick replanning. The International Journal of Robotics Research, 35(7), 797–822.

    Article  Google Scholar 

  • Park, C., Pan, J., & Manocha, D. (2014). Poisson-RRT. In IEEE international conference on robotics and automation (pp. 4667–4673).

  • Perez, A., Platt, R., Konidaris, G., & Kaelbling, L. (2012). \(\rm LQR-RRT^{*}\): Optimal sampling-based motion planning with automatically derived extension heuristics. In IEEE international conference on robotics and automation (pp. 2537–2542).

  • Qureshi, A. H., & Ayaz, Y. (2016). Potential functions based sampling heuristic for optimal path planning. Autonomous Robots, 40(6), 1079–1093.

    Article  Google Scholar 

  • Saha, M., Latombe, J. C., Chang, Y. C., & Prinz, F. (2005). Finding narrow passages with probabilistic roadmaps: The small-step retraction method. Autonomous Robots, 19(3), 301–319.

    Article  Google Scholar 

  • Salzman, O., & Dan, H. (2016). Asymptotically near-optimal \(\text{ RRT }\) for fast, high-quality motion planning. IEEE Transactions on Robotics, 32(3), 473–483.

    Article  Google Scholar 

  • Sun, Z., Hsu, D., Jiang, T., Kurniawati, H., & Reif, J. H. (2005). Narrow passage sampling for probabilistic roadmap planning. IEEE Transactions on Robotics, 21(6), 1105–1115.

    Article  Google Scholar 

  • Suo, M., Zhu, B., Zhang, Y., An, R., & Li, S. (2018). Fuzzy bayes risk based on mahalanobis distance and Gaussian kernel for weight assignment in labeled multiple attribute decision making. Knowledge-Based Systems, 152, 26–39.

    Article  Google Scholar 

  • Thomas, S., Morales, M., Tang, X., Amato, N. M. (2007). Biasing samplers to improve motion planning performance. In Proceedings 2007 IEEE international conference on robotics and automation (pp. 1625–1630). IEEE.

  • Van den Berg, J. P., & Overmars, M. H. (2005). Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. The International Journal of Robotics Research, 24(12), 1055–1071.

    Article  Google Scholar 

  • Ventura, J., Ciarci, M., Romano, M., & Walter, U. (2016). Fast and near-optimal guidance for docking to uncontrolled spacecraft. Journal of Guidance, Control, and Dynamics, 40(12), 3138–3154.

    Article  Google Scholar 

  • Xie, C., Berg, J. V. D., Patil, S., & Abbeel, P. (2015). Toward asymptotically optimal motion planning for kinodynamic systems using a two-point boundary value problem solver. In IEEE international conference on robotics and automation (pp. 4187–4194).

  • Yang, M. S., Lai, C. Y., & Lin, C. Y. (2012). A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognition, 45(11), 3950–3961.

    Article  Google Scholar 

  • Zucker, M., Kuffner, J., & Bagnell, J. A. (2009). Adaptive workspace biasing for sampling-based planners. In IEEE international conference on robotics & automation (pp. 3757–3762).

  • Zucker, M., Kuffner, J., & Branicky, M. (2007). Multipartite \(\text{ RRTs }\) for rapid replanning in dynamic environments. In IEEE international conference on robotics and automation (pp. 1603–1609).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunli Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., He, Z. & Li, S. Horizon-based lazy optimal RRT for fast, efficient replanning in dynamic environment. Auton Robot 43, 2271–2292 (2019). https://doi.org/10.1007/s10514-019-09879-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-019-09879-8

Keywords

Navigation