Skip to main content
Log in

The Orbiting Dubins Traveling Salesman Problem: planning inspection tours for a minehunting AUV

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The Orbiting Dubins Traveling Salesman Problem (ODTSP) is to plan a minimum-time tour for a Dubins vehicle model to inspect a set of targets in the plane by orbiting each target along a circular arc. This problem arises in underwater minehunting, where targets are mine-like objects on the sea bottom that are inspected by a sonar-equipped underwater vehicle. Each orbit subtends a prescribed angle so that the target’s acoustic response is measured from a variety of target-sensor relative geometries to aid in classifying it. ODTSP tours consist of circular-arc orbits joined by Dubins paths, and the optimization problem is to partition the set of targets into orbits and determine the position, radius, direction, and vehicle entry angle of each. Algorithms are presented for the restricted case, where each orbit inspects a single target (only), and the general case, where orbits inspect multiple targets. The approach is facilitated by analytical conditions that identify admissible clusters of targets as cliques of a disk graph. The ODTSP is extended to consider path planning in the presence of a steady uniform current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. Note that the symbol O used here for worst-case time complexity differs from \(O \subseteq {\mathcal {I}}\) introduced in Sect. 2 to represent orbits.

References

  • Anderson, R. P., & Milutinović, D. (2015). On the construction of minimum-time tours for a Dubins vehicle in the presence of uncertainties. Journal of Dynamic Systems, Measurement and Control, 137(3), 1–8.

    Article  Google Scholar 

  • Applegate, D. L., Bixby, R. E., Chvátal, V., & Cook, W. J. (2006). The traveling salesman problem: A computational study. Princeton: Princeton University Press.

    MATH  Google Scholar 

  • Bays, M. J., Shende, A., Stilwell, D. J., & Redfield, S. A. (2012). Theory and experimental results for the multiple aspect coverage problem. Ocean Engineering, 54, 51–60.

    Article  Google Scholar 

  • Behzad, A., & Modarres, M. (2002). A new efficient transformation of generalized traveling salesman problem into traveling salesman problem. In Proceedings of the 15th international conference on systems engineering (pp. 6–8).

  • Chow, B., Clark, C. M., & Huissoon, J. P. (2011). Assigning closely spaced targets to multiple autonomous underwater vehicles. Journal of Ocean Technology, 6(1), 56–77.

    Google Scholar 

  • Clark, B. N., Colbourn, C. J., & Johnson, D. S. (1990). Unit disk graphs. Discrete Mathematics, 86, 165–177.

    Article  MathSciNet  Google Scholar 

  • Cons, M. S., Shima, T., & Domshlak, C. (2014). Integrating task and motion planning for unmanned aerial vehicles. Unmanned Systems, 2(1), 19–38.

    Article  Google Scholar 

  • Couillard, M., Fawcett, J., & Davison, M. (2012). Optimizing constrained search patterns for remote mine-hunting vehicles. IEEE Journal of Oceanic Engineering, 37(1), 75–84.

    Article  Google Scholar 

  • Dekster, B. V. (1995). The Jung theorem for spherical and hyperbolic spaces. Acta Mathematica Hungarica, 67(4), 315–331.

    Article  MathSciNet  Google Scholar 

  • Drchal, J., Faigl, J., & Váňa, P. (2020). WiSM: Windowing surrogate model for evaluation of curvature-constrained tours with Dubins vehicle. In: arXiv:2002.00811, pp. 1–10.

  • Dubins, L. E. (1957). On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. American Journal of Mathematics, 79(3), 497–516.

    Article  MathSciNet  Google Scholar 

  • Faigl, J., Váňa, P., Saska, M., Báča, T., & Spurný, V. (2017). On solution of the Dubins touring problem. In 2017 European conference on mobile robots (pp. 84–96).

  • Faigl, J., Váňa, P., Pěnička, R., & Saska, M. (2019). Unsupervised learning-based flexible framework for surveillance planning with aerial vehicles. Journal of Field Robotics, 1, 270–301.

    Article  Google Scholar 

  • Frölind, P. O., Gustavsson, A., Lundberg, M., & Ulander, L. M. H. (2012). Circular-aperture VHF-band synthetic aperture radar for detection of vehicles in forest concealment. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1329–1339.

    Article  Google Scholar 

  • Gäertner, B. (2013). Miniball (Version 3.0). https://people.inf.ethz.ch/gaertner/subdir/software/miniball.html. (Accessed on 20 August 2020).

  • Hanson, C., Richardson, J., & Girard, A. (2011). Path planning of a Dubins vehicle for sequential target observation with ranged sensors. In Proceedings of the 2011 American control conference (pp. 1698–1703).

  • Helsgaun, K. (2000). Effective implementation of the Lin-Kernighan traveling salesman heuristic. European Journal of Operational Research, 126(1), 106–130.

    Article  MathSciNet  Google Scholar 

  • Helsgaun, K. (2012). LKH (Version 2.0.7). http://akira.ruc.dk/~keld/research/LKH/. (Accessed on 20 August 2020).

  • Helsgaun, K. (2013). GLKH (Version 1.0). http://akira.ruc.dk/~keld/research/GLKH/. (Accessed on 20 August 2020).

  • Huang, H., & Savkin, A. V. (2017). Viable path planning for data collection robots in a sensing field with obstacles. Computer Communications, 111, 84–96.

    Article  Google Scholar 

  • Isaacs, J. T., & Hespanha, J. P. (2013). Dubins traveling salesman problem with neighborhoods: A graph-based approach. Algorithms, 6(1), 84–99.

    Article  MathSciNet  Google Scholar 

  • Isaacs, J. T., Klein, D. J., & Hespanha, J. P. (2011). Algorithms for the traveling salesman problem with neighborhoods involving a Dubins vehicle. In Proceedings of the 2011 American control conference (pp. 1704–1709).

  • Isaiah, P., & Shima, T. (2015). Motion planning algorithm for the Dubins travelling salesperson problem. Automatica, 53, 247–255.

    Article  MathSciNet  Google Scholar 

  • Jang, D. S., Chae, H. J., & Choi, H. L. (2017). Optimal control-based UAV path planning with dynamically-constrained TSP with neighborhoods. In Proceedings of the 2017 17th international conference on control, automation and systems (pp. 373–378).

  • Jonker, R., & Volgenant, T. (1983). Transforming asymmetric into symmetric traveling salesman problems. Operations Research Letters, 2(4), 161–163.

    Article  Google Scholar 

  • Kennedy, J. L., & Marston, T. M. (2018). Multipass and non-concentric target circular synthetic aperture sonar. Naval Surface Warefare Center Panama City Division, Panama City, FL: Tech. rep.

  • Lien, Y. N., Ma, E., & Wah, B. W. S. (1993). Transformation of the generalized traveling-salesman problem into the standard traveling-salesman problem. Information Sciences, 74, 177–189.

    Article  MathSciNet  Google Scholar 

  • Ma, X., & Castañón, D. A. (2006). Receding horizon planning for Dubins traveling salesman problems. In Proceedings of the 45th IEEE conference on decision and control (pp. 5453–5458).

  • Macharet, D. G., & Campos, M. F. M. (2018). A survey on routing problems and robotic systems. Robotica, 36(12), 1781–1803.

    Article  Google Scholar 

  • Macharet, D. G., Neto, A. A., da Camara Neto, V. F., & Campos, M. F. M. (2012). Data gathering tour optimization for Dubins’ vehicles. In Proceedings of the IEEE world congress on computational intelligence (pp. 1–8).

  • Macharet, D. G., Neto, A. A., da Camara Neto, V. F., & Campos, M. F. M. (2013). Efficient target visiting path planning for multiple vehicles with bounded curvature. In Proceedings of the 2013 IEEE/RSJ international conference on intelligent robots and systems (pp. 3830–3836).

  • Manyam, S. G., Rathinam, S., Casbeer, D., & Garcia, E. (2017). Tightly bounding the shortest Dubins paths through a sequence of points. Journal of Intelligent and Robotic Systems, 88, 495–511.

    Article  Google Scholar 

  • Manyam, S. G., Casbeer, D., Von Moll, A. L., & Fuchs, Z. (2019). Shortest Dubins path to a circle. In AIAA SciTech 2019 Forum (pp. 1–12).

  • McGee, T. G., & Hedrick, J. K. (2006). Path planning and control for multiple point surveillance by an unmanned aircraft in wind. In Proceedings of the 2006 American control conference (pp. 4261–4266).

  • McGee, T. G., & Hedrick, J. K. (2007). Optimal path planning with a kinematic airplane model. Journal of Guidance, Control, and Dynamics, 30(2), 629–633.

    Article  Google Scholar 

  • Megiddo, N. (1983). Linear-time algorithms for linear programming in \({\mathbb{R}}^3\) and related problems. SIAM Journal of Computing, 12(4), 759–776.

    Article  Google Scholar 

  • Noon, C. E., & Bean, J. C. (1993). An efficient transformation of the generalized traveling salesman problem. Information Systems and Operational Research, 31(1), 39–44.

    Article  Google Scholar 

  • Ny, J. L., Feron, E., & Frazzoli, E. (2012). On the Dubins traveling salesman problem. IEEE Transactions on Automatic Control, 57(1), 265–270.

    Article  MathSciNet  Google Scholar 

  • Oberlin, P., Rathinam, S., & Darbha, S. (2010). Today’s traveling salesman problem: Heterogeneous, multiple depot, multiple UAV routing problem. IEEE Robotics Automation Magazine, 17(4), 70–77.

    Article  Google Scholar 

  • Obermeyer, K. J., Oberlin, P., & Darbha, S. (2012). Sampling-based path planning for a visual reconnaissance unmanned air vehicle. Journal of Guidance, Control, and Dynamics, 35(2), 619–631.

    Article  Google Scholar 

  • Östergård, P.(2010). Cliquer (Version 1.21). https://users.aalto.fi/~pat/cliquer.html. (Accessed on 20 August 2020).

  • Palm, S., Sommer, R., Janssen, D., Tessmann, A., & Stilla, U. (2019). Airborne circular W-Band SAR for multiple aspect urban site monitoring. IEEE Transactions on Geoscience and Remote Sensing, 57(9), 6996–7016.

    Article  Google Scholar 

  • Pěnička, R., Faigl, J., Saska, M., & Váňa, P. (2019). Data collection planning with non-zero sensing distance for a budget and curvature constrained unmanned aerial vehicle. Autonomous Robots, 43(8), 1937–1956.

    Article  Google Scholar 

  • Plotnick, D. S., & Marston, T. M. (2018). Utilization of aspect angle information in synthetic aperture images. IEEE Transactions on Geoscience and Remote Sensing, 56(9), 5424–5432.

    Article  Google Scholar 

  • Rathinam, S., Sengupta, R., & Darbha, S. (2007). A resource allocation algorithm for multivehicle systems with nonholonomic constraints. IEEE Transactions on Automation Science and Engineering, 4(1), 98–104.

    Article  Google Scholar 

  • Savla, K., Bullo, F., & Frazzoli, E. (2005). On traveling salesperson problems for Dubins’ vehicle: Stochastic and dynamic environments. In Proceedings of the 44th IEEE conference on decision and control (pp. 4530–4535).

  • Savla, K., Frazzoli, E., & Bullo, F. (2008). On the point-to-point and traveling salesperson problems for Dubins’ vehicle. IEEE Transactions on Automatic Control, 53(6), 1378–1391.

    Article  MathSciNet  Google Scholar 

  • Stack, J. (2011). Automation for underwater mine recognition: Current trends and future strategy. Proceedings of SPIE: Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XV, I(8017), 1–21.

    MathSciNet  Google Scholar 

  • Tang, G., Wang, Z., & Williams, A. L. (1998). On the construction of an optimal feedback control law for the shortest path problem for the Dubins car-like robot. In Proceedings of the 30th southeastern symposium on systems theory (pp. 280–284).

  • Tang, Z., & Özgüner, Ü. (2005). Motion planning for multitarget surveillance with mobile sensor agents. IEEE Transactions on Robotics, 21(5), 898–908.

    Article  Google Scholar 

  • Techy, L., & Woolsey, C. A. (2009). Minimum-time path planning for unmanned aerial vehicles in steady uniform winds. Journal of Guidance, Control, and Dynamics, 32(6), 1736–1746.

    Article  Google Scholar 

  • Tomita, E., Tanaka, A., & Takahashi, H. (2006). The worst-case time complexity for generating all maximal cliques and computational experiments. Theoretical Computer Science, 363(1), 28–42.

    Article  MathSciNet  Google Scholar 

  • Váňa, P., & Faigl, J. (2015). On the Dubins traveling salesman problem with neighborhoods. In 2015 IEEE/RSJ International conference on intelligent robots and systems (pp. 4029–4034).

  • Váňa, P., Sláma, J., & Faigl, J. (2018). The Dubins traveling salesman problem with neighborhoods in three-dimensional space. In 2018 IEEE international conference on robotics and automation (pp. 374–379).

  • Wolek, A., & Woolsey, C. (2015). Feasible Dubins paths in presence of unknown, unsteady velocity disturbances. Journal of Guidance, Control, and Dynamics, 38(4), 782–787.

    Article  Google Scholar 

  • Xing, Z., Jie, C., Bin, X., & Zhihong, P. (2014). A memetic algorithm for path planning of curvature-constrained UAVs performing surveillance of multiple ground targets. Chinese Journal of Aeronautics, 27(3), 622–633.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur Wolek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of A. Wolek was supported by the American Society for Engineering Education through the ASEE postdoctoral fellowship program at the Naval Research Laboratory. The work of J. McMahon, B. R. Dzikowicz, and B. H. Houston was supported by the Office of Naval Research through the Naval Research Laboratory base program.

Appendices

A Performance bounds for the ODTSP

The following Corollaries establishes performance bounds for the restricted ODTSP.

Corollary 2

(Worst case performance) Suppose that \(||\mathbf{v}_i - \mathbf{v}_j || \ge 2 s_{\mathrm{min}}\) for all \(\mathbf{v}_i, \mathbf{v}_j \in V_t\). Let \(J_{\mathrm{NC}}^*\) be the cost of the optimal ODTSP tour with no clustering and a fixed orbit radius \(s_{\mathrm{min}}\), i.e., \(n_o = n_t\), and \(\rho _i = s_{\mathrm{min}}\) for all \(i \in {\mathcal {I}}\). Let \(J_{\mathrm{NC}}\) be the cost of a tour obtained by either SymAngle or NoCluster. The cost \(J_{\mathrm{NC}}\) is within a factor \( J_{\mathrm{NC}} \le \lambda J_{\mathrm{NC}}^* \) of the optimal solution, where \(\lambda \) is given in (38).

Proof

First, refer to Theorem 3.1 in (Savla et al. 2008) which establishes that the length of a Dubins path joining any two states \(\mathbf{q}_i =(x_i,y_i,\psi _i)\) and \(\mathbf{q}_j = (x_j,y_j,\psi _j)\) is bounded from above by

$$\begin{aligned} D_p(\mathbf{q}_i,\mathbf{q}_j) \le d_{ij} + \kappa \pi R \;, \end{aligned}$$
(33)

where \(\kappa \in [2.657, 2.658]\) is a constant. For the ODTSP, if \(||\mathbf{v}_i - \mathbf{v}_j || \ge 2 s_{\mathrm{min}}\), the cost of the inter-orbit path \(D_{p}(\mathbf{q}_i, \mathbf{q}_{j})\) with \(\mathbf{q}_i\in Q(\mathbf{v}_i, s_{\mathrm{min}})\) and \(\mathbf{q}_{j} \in Q(\mathbf{v}_{j}, s_{\mathrm{min}})\) is bounded by

$$\begin{aligned} ||\mathbf{v}_i - \mathbf{v}_{j} || - 2 s_{\mathrm{min}} \le D_{p}(\mathbf{q}_i, \mathbf{q}_{j}) \le ||\mathbf{v}_i - \mathbf{v}_{j} || + 2 s_{\mathrm{min}} + \kappa \pi R \;. \end{aligned}$$
(34)

Now proceed in parallel to Theorem 3.1 in (Isaacs et al. 2011). Apply the inequality (34) to each pair of targets \(\mathbf{v}_i, \mathbf{v}_j \in V_t\) to obtain the least lower bound

$$\begin{aligned} \lambda _{\mathrm{LB}} \triangleq \min _{\mathbf{v}_i, \mathbf{v}_j \in V_t} || \mathbf{v}_i - \mathbf{v}_j || - 2 s_{\mathrm{min}} \;, \end{aligned}$$
(35)

and the greatest upper bound

$$\begin{aligned} \lambda _{\mathrm{UB}} \triangleq \max _{\mathbf{v}_i, \mathbf{v}_j \in V_t} || \mathbf{v}_i - \mathbf{v}_j || + 2 s_{\mathrm{min}} + \kappa \pi R \;. \end{aligned}$$
(36)

Using (7) and (8), the ratio of tour costs is

$$\begin{aligned} \frac{J_{\mathrm{NC}}}{J_{\mathrm{NC}}^*}&= \frac{\sum _{i=1}^{n_t-1} D_p({\mathcal {T}}_i, {\mathcal {T}}_{i+1}) + D_p({\mathcal {T}}_{n_t}, {\mathcal {T}}_1) + n_t s_{\mathrm{min}} \Theta }{\sum _{i=1}^{n_t-1} D_p({\mathcal {T}}_i^*, {\mathcal {T}}_{i+1}^*) + D_p({\mathcal {T}}_{n_t}^*, {\mathcal {T}}_1^*) + n_t s_{\mathrm{min}} \Theta } \;, \end{aligned}$$
(37)

where \({\mathcal {T}}_i^*\) is the optimal set of orbit parameters, and \({\mathcal {T}}_i\) is the set of orbit parameters obtained with the SymAngle or NoCluster algorithm. For all \(i \in \{1,\ldots ,n_t-1\}\) the bounds (35) and (36) imply that \(\lambda _{\mathrm{LB}} \le D_p({\mathcal {T}}_i, {\mathcal {T}}_{i+1}) \le \lambda _{\mathrm{UB}}\). Similarly, the bounds imply \(\lambda _{\mathrm{LB}} \le D_p({\mathcal {T}}^*_{n_t}, {\mathcal {T}}^*_{1}) \le \lambda _{\mathrm{UB}}\). Substitute these inequalities into (37) to obtain

$$\begin{aligned} \frac{J_{\mathrm{NC}}}{J_{\mathrm{NC}}^*}&\le \frac{\lambda _{\mathrm{UB}} + s_{\mathrm{min}} \Theta }{\lambda _{\mathrm{LB}} + s_{\mathrm{min}} \Theta } \triangleq \lambda \; . \end{aligned}$$
(38)

\(\square \)

Corollary 3

(Bounds on optimal tour cost) Suppose that \(||\mathbf{v}_i - \mathbf{v}_j || \ge 2s_{\mathrm{min}}\) for all \(\mathbf{v}_i, \mathbf{v}_j \in V_t\). The optimal cost, \(J_{\mathrm{NC}}^*\), of the ODTSP tour without clustering is bounded by

$$\begin{aligned} L_{\mathrm{ETSP}} - \eta ^- \le J_{\mathrm{NC}}^* \le L_{\mathrm{ETSP}} + \eta ^+ \;, \end{aligned}$$

where \(\eta ^- \triangleq s_{\mathrm{min}}n_t(2 - \Theta )\), \(\eta ^+ \triangleq n_t(s_{\mathrm{min}}(2 + \Theta ) + \kappa \pi R )\), and \(L_{\mathrm{ETSP}}\) is the length of the optimal ETSP tour through \(V_t\).

Proof

Let \(\gamma _{\mathrm{ETSP}}= \{{(\mathbf{v}}_{i_1},\mathbf{v}_{i_2}), \ldots , (\mathbf{v}_{i_{n_t}},\mathbf{v}_{i_{1}})\}\) be the optimal ETSP tour through the points \(V_t\) with length

$$\begin{aligned} L_{\mathrm{ETSP}} = \sum _{j=1}^{n_t -1} || \mathbf{v}_{i_j} - \mathbf{v}_{i_{j+1}} || ~+~ || \mathbf{v}_{i_{n_t}} - \mathbf{v}_{i_{1}} || \;. \end{aligned}$$
(39)

Let \(J_{\mathrm{NC}}\) be the cost of a ODTSP tour with orbit parameters \(\{{\mathcal {T}}_1, \ldots , {\mathcal {T}}_{n_t} \}\) that passes through the targets in the order specified by \(\gamma _{\mathrm{ETSP}}\). Using (7) and (8),

$$\begin{aligned} J_{\mathrm{NC}}&= \sum _{i=1}^{n_t-1} D_p({\mathcal {T}}_i, {\mathcal {T}}_{i+1}) + D_p({\mathcal {T}}_{n_t}, {\mathcal {T}}_1) + n_t s_{\mathrm{min}} \Theta \;. \end{aligned}$$
(40)

Applying the upper bound in (34) to each \(D_p\) term in (40) gives

$$\begin{aligned} J_{\mathrm{NC}}&\ge \sum _{j=1}^{n_t -1} || \mathbf{v}_{i_j} - \mathbf{v}_{i_{j+1}} || ~+~ || \mathbf{v}_{i_{n_t}} - \mathbf{v}_{i_{1}} || \nonumber \\&+ n_t[s_{\mathrm{min}}(2+\Theta ) + \kappa \pi R )] \;. \end{aligned}$$
(41)

Substituting (39) into (41) yields \(J_{\mathrm{NC}}^* \le J_{\mathrm{NC}} \le L_{\mathrm{ETSP}} + \eta ^+\).

To determine the lower bound, suppose that an optimal ODTSP tour passes through a sequence of points whose tour length is \(L_{\mathrm{NC}}\) (with \(L_{\mathrm{ETSP}} \le L_{\mathrm{NC}}\) by definition of an ETSP). Applying a similar procedure establishes \( L_{\mathrm{ETSP}} - \eta ^- \le L_{\mathrm{NC}} - \eta ^- \le J_{\mathrm{NC}} \;. \) \(\square \)

Time complexity of the ODTSP

The time complexityFootnote 1 of the ODTSP algorithms is driven by the tour computation and, for clustering algorithms only, clique enumeration. The minimum enclosing circle computation is linear in the number of targets \(O(n_t)\) (Megiddo 1983). Other procedures, such as evaluating the Dubins path cost matrix or sorting cliques, do not drive the complexity. The complexity is summarized in Table 1, with the number of targets \(n_t\) and number of entry angles \(n_e\) as inputs.

Table 1 Worst-case time complexity of the ODTSP

The complexity of the restricted ODTSP algorithms is determined as follows. The LKH solver in SymAngle has numerically established complexity \(O(n^{2.2})\) (Helsgaun 2000). Since the ETSP in SymAngle has \(n_t\) nodes, SymAngle is \(O(n_t^{2.2})\). An asymmetric GTSP can be transformed into an asymmetric TSP with the same number of nodes (Behzad and Modarres 2002), and further into a TSP with twice as many nodes (Jonker and Volgenant 1983). Since NoCluster GTSP contains \(n_e n_t\) nodes, it is \(O([n_en_t]^{2.2})\).

The complexity of the general ODTSP algorithms is established similarily. A GTSP with intersecting nodesets can be transformed into an instance of the GTSP with non-intersecting nodesets by creating \(|F_v|\) additional replica nodes, for each node \(v \in V\), where \(F_v\) is the membership set indicating which nodesets v belongs to (Lien et al. 1993). ExhaustCluster contains \(n_e n_c\) nodes grouped into at most \(n_c\) intersecting nodesets, where \(n_c\) is the number of candidate orbits. The worst-case number of candidate orbits \(n_c = 2^{n_t}\) occurs when each element of the powerset of \({\mathcal {I}}\) is an admissible orbit. Thus, this GTSP has at most \(2^{n_t}n_e\) nodes and \(2^{n_t}n_e n_t\) replica nodes. The corresponding TSP is \(O([2^{n_t}n_e(1+n_t)]^{2.2})\). Determining admissible orbits requires enumerate all cliques of a disk graph with \(n_t\) nodes, which is also computationally expensive. The following steps yield all cliques: enumerate all maximal cliques \(O(3^{n/3})\) (Tomita et al. 2006), compute the powerset for each maximal clique \(O(2^n)\), remove duplicate cliques from the resulting list O(n). Therefore, enumerating all cliques is no worse than \(O( 2^{n_t} n_t )\), and the complexity of ExhaustCluster is dominated by the TSP. Clearly, ExhaustCluster is not practical for a large number of targets or entry angles, but it provides a useful benchmark for comparing the tour cost of MaxCluster. The GTSP in MaxCluster has the same complexity as NoCluster, \(O([n_en_t]^{2.2})\), since the number of orbits is no greater than \(n_t\). Enumerating all maximal cliques is \(O(3^{n_t/3})\) (Tomita et al. 2006), thus MaxCluster is \(O(\mathrm{max}\{[n_t n_e]^{2.2},3^{n_t/3}\})\). The analysis indicates that the algorithms SymAngle, NoCluster, MaxCluster, and ExhaustCluster increase in complexity and confirms the trend observed in the Monte Carlo simulation results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wolek, A., McMahon, J., Dzikowicz, B.R. et al. The Orbiting Dubins Traveling Salesman Problem: planning inspection tours for a minehunting AUV. Auton Robot 45, 31–49 (2021). https://doi.org/10.1007/s10514-020-09946-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-020-09946-5

Keywords

Navigation