Skip to main content
Log in

A unified framework for measuring interplane and intraplane coupling in spatial biped robots

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

While fully actuated biped robots can control each degree of freedom independently, coupling must be used during phases of underactuation to maintain dynamic stability. The amount of coupling can be quantified via velocity decomposition, which partitions the system’s velocities into controlled and uncontrolled directions. Used previously on planar mechanical systems with one degree of underactuation, the decomposition becomes non-unique with multiple degrees of underactuation. This paper extends the velocity decomposition formulation to mechanical systems with several degrees of underactuation, applying it to a spatial biped robot for the first time. Two measures of dynamic coupling are introduced: intraplane coupling between the controlled and uncontrolled directions in the same plane and interplane coupling between the controlled directions in the sagittal/frontal plane and uncontrolled direction in the frontal/sagittal plane. Comparative studies show that the dynamic coupling of planar and spatial gaits of five-link biped models is very different at slow speeds, suggesting that the mechanisms of slow walking are fundamentally different and that planar models are not adequate to analyze slow-speed walking. Also, weak interplane coupling in slower gaits suggests that the 3D dynamics of the spatial biped are largely decoupled at slow speeds, such that distinct control strategies may be adequate to stabilize the sagittal and frontal planes separately. Strong interplane coupling at faster speeds suggests that the full 3D dynamics must be considered together for stabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Fevre et al. (2018) applied the velocity decomposition formulation to the task of controller synthesis on a five-link biped robot underactuated by one and achieved a closed-loop control rate of 500 Hz.

  2. det(\({\mathbf {B}}, {\mathbf {F}}_1^\perp , {\mathbf {F}}_2^\perp \)) \(= \alpha \gamma \ne 0\) if \(\alpha , \gamma \ne 0\).

  3. https://github.com/fevrem/velocity-decomposition.

References

  • Agrawal, S. K., & Sangwan, V. (2008). Differentially flat designs of underactuated open-chain planar robots. IEEE Transactions on Robotics, 24(6), 1445–1451.

    Article  Google Scholar 

  • Alexander, R. M. (1984). The gaits of bipedal and quadrupedal animals. The International Journal of Robotics Research, 3(2), 49–59.

    Article  Google Scholar 

  • Ames, A. D., Gregg, R. D., & Spong, M. W. (2007). A geometric approach to three-dimensional hipped bipedal robotic walking. In Proceedings IEEE conference on decision and control (pp. 5123–5130).

  • Ames, A. D., & Sastry, S. (2006). Hybrid Routhian reduction of Lagrangian hybrid systems. In Proceedings IEEE American control conference.

  • Bravo-Palacios, G., Prete, A. D., & Wensing, P. M. (2020). One robot for many tasks: Versatile co-design through stochastic programming. IEEE Robotics & Automation Letters, 5(2), 1680–1687.

    Article  Google Scholar 

  • Bullo, F., & Lewis, A. D. (2004). Geometric control of mechanical systems: Modeling, analysis, and design for simple mechanical control systems (Vol. 49). Springer.

  • Buss, B. G., Hamed, K. A., Griffin, B. A., & Grizzle, J. W. (2016). Experimental results for 3D bipedal robot walking based on systematic optimization of virtual constraints. In Proceedings IEEE American control conference (pp. 4785–4792).

  • Chen, T., Schmiedeler, J. P., & Goodwine, B. (2020). Robustness and efficiency insights from a mechanical coupling metric for ankle-actuated biped robots. Autonomous Robots, 44(2), 281–295.

    Article  Google Scholar 

  • Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., & Kanade, T. (2005). Footstep planning for the Honda ASIMO humanoid. In Proceedings IEEE international conference on robotics and automation (pp. 629–634).

  • Chevallereau, C., Grizzle, J. W., & Shih, C. L. (2009). Asymptotically stable walking of a five-link underactuated 3D bipedal robot. IEEE Transactions on Robotics, 25(1), 37–50.

    Article  Google Scholar 

  • Collins, S., & Kuo, A. D. (2013). Two independent contributions to step variability during over-ground human walking. PLOS ONE, 8(8), e73597.

    Article  Google Scholar 

  • Da, X., & Grizzle, J. (2019). Combining trajectory optimization, supervised machine learning, and model structure for mitigating the curse of dimensionality in the control of bipedal robots. The International Journal of Robotics Research, 38(9), 1063–1097.

    Article  Google Scholar 

  • Da, X., Harib, O., Hartley, R., Griffin, B., & Grizzle, J. W. (2016). From 2D design of underactuated bipedal gaits to 3D implementation: Walking with speed tracking. IEEE Access, 4, 3469–3478.

    Article  Google Scholar 

  • Dasgupta, A., & Nakamura, Y. (1999). Making feasible walking motion of humanoid robots from human motion capture data. In Proceedings IEEE international conference on robotics and automation (pp. 1044–1049).

  • Doi, M., Hasegawa, Y., & Fukuda, T. (2005). Realization of 3D dynamic walking based on the assumption of point-contact. In Proceedings IEEE international conference on robotics and automation (pp. 4120–4125).

  • Feng, S., Xinjilefu, X., Atkeson, C. G., & Kim, J. (2015). Optimization based controller design and implementation for the Atlas robot in the DARPA robotics challenge finals. In Proceedings IEEE international conference on humanoid robots (pp. 1028–1035).

  • Fevre, M., Goodwine, B., & Schmiedeler, J. P. (2018). Design and experimental validation of a velocity decomposition-based controller for underactuated planar bipeds. IEEE Robotics & Automation Letters, 3(3), 1896–1903.

    Article  Google Scholar 

  • Fevre, M., Goodwine, B., & Schmiedeler, J. P. (2019a). Terrain-blind walking of planar underactuated bipeds via velocity decomposition-enhanced control. The International Journal of Robotics Research, 38(10–11), 1307–1323.

  • Fevre, M., Goodwine, B., & Schmiedeler, J. P. (2019b). Velocity decomposition-enhanced control for point and curved-foot planar bipeds experiencing velocity disturbances. ASME Journal of Mechanisms and Robotics, 11(2), 1–8.

  • Fevre, M., & Schmiedeler, J. P. (2020). Dynamic coupling as an indicator of gait robustness for underactuated biped robots. In Proceedings IEEE international conference on robotics and automation (pp. 8732–8738).

  • Fevre, M., Wensing, P. M., & Schmiedeler, J. P. (2020). Rapid bipedal gait optimization in CasADi. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (pp. 3672–3678).

  • Fukuda, T., Doi, M., Hasegawa, Y., & Kajima, H. (2006). Multi-locomotion control of biped locomotion and brachiation robot. In Fast motions in biomechanics and robotics (pp. 121–145). Springer.

  • Gong, Y., Hartley, R., Da, X., Hereid, A., Harib, O., Huang, J.-K., & Grizzle, J. (2019). Feedback control of a Cassie bipedal robot: Walking, standing, and riding a segway. In Proceedings IEEE American control conference (pp. 4559–4566).

  • Goodwine, B., & Nightingale, J. (2010). The effect of dynamic singularities on robotic control and design. In Proceedings IEEE international conference on robotics and automation (pp. 5213–5218).

  • Goswami, A., Espiau, B., & Keramane, A. (1997). Limit cycles in a passive compass gait biped and passivity-mimicking control laws. Autonomous Robots, 4(3), 273–286.

    Article  Google Scholar 

  • Gregg, R. D., & Spong, M. W. (2010). Reduction-based control of three-dimensional bipedal walking robots. The International Journal of Robotics Research, 29(6), 680–702.

    Article  Google Scholar 

  • Grizzle, J. W., Chevallereau, C., & Shih, C.-L. (2008). HZD-based control of a five-link underactuated 3D bipedal robot. In Proceedings IEEE conference on decision and control (pp. 5206–5213).

  • Ha, S., Coros, S., Alspach, A., Kim, J., & Yamane, K. (2018). Computational co-optimization of design parameters and motion trajectories for robotic systems. The International Journal of Robotics Research, 37(13–14), 1521–1536.

    Article  Google Scholar 

  • Hubicki, C., Grimes, J., Jones, M., Renjewski, D., Spröwitz, A., Abate, A., & Hurst, J. (2016). Atrias: Design and validation of a tether-free 3D-capable spring-mass bipedal robot. The International Journal of Robotics Research, 35(12), 1497–1521.

    Article  Google Scholar 

  • Isidori, A. (2013). Nonlinear control systems. Springer.

  • Koller, J. R., Gates, D. H., Ferris, D. P., & Remy, C. D. (2016). ‘Body-in-the-loop’ optimization of assistive robotic devices: A validation study. In Robotics: Science and Systems, 2016, 1–10.

    Google Scholar 

  • Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., Koolen, T., Marion, P., & Tedrake, R. (2016). Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Autonomous Robots, 40(3), 429–455.

    Article  Google Scholar 

  • Manchester, I. R., Mettin, U., Iida, F., & Tedrake, R. (2011). Stable dynamic walking over uneven terrain. The International Journal of Robotics Research, 30(3), 265–279.

    Article  Google Scholar 

  • McGeer, T. (1990). Passive dynamic walking. The International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • Miura, H., & Shimoyama, I. (1984). Dynamic walk of a biped. The International Journal of Robotics Research, 3(2), 60–74.

    Article  Google Scholar 

  • Nightingale, J., Hind, R., & Goodwine, B. (2008). Intrinsic vector-valued symmetric form for simple mechanical control systems in the nonzero velocity setting. In Proceedings IEEE international conference on robotics and automation (pp. 2435–2440).

  • Nightingale, J., Hind, R., & Goodwine, B. (2009). A stopping algorithm for mechanical systems. In Algorithmic foundation of robotics (pp. 167–180). Springer.

  • O’Connor, S. M., Xu, H. Z., & Kuo, A. D. (2012). Energetic cost of walking with increased step variability. Gait & Posture, 36(1), 102–107.

    Article  Google Scholar 

  • Park, H.-W., Sreenath, K., Hurst, J. W., & Grizzle, J. W. (2011). Identification of a bipedal robot with a compliant drivetrain. IEEE Control Systems Magazine, 31(2), 63–88.

    Article  MathSciNet  Google Scholar 

  • Powers, J. M., & Sen, M. (2015). Mathematical methods in engineering. Cambridge University Press.

  • Raibert, M. H. (1986). Legged robots that balance. MIT press.

  • Reher, J., Cousineau, E. A., Hereid, A., Hubicki, C. M., & Ames, A. D. (2016). Realizing dynamic and efficient bipedal locomotion on the humanoid robot DURUS. In Proceedings IEEE international conference on robotics and automation (pp. 1794–1801).

  • Ryu, J.-C., & Agrawal, S. K. (2010). Planning and control of underactuated mobile manipulators using differential flatness. Autonomous Robots, 29(1), 35–52.

    Article  Google Scholar 

  • Sinnet, R. W., & Ames, A. D. (2009). 3D bipedal walking with knees and feet: A hybrid geometric approach. In Proceedings IEEE conference on decision and control (pp. 3208–3213).

  • Tedrake, R., Zhang, T. W., & Seung, H. S. (2004). Stochastic policy gradient reinforcement learning on a simple 3D biped. In Proceedings IEEE/RSJ international conference on intelligent robots and systems (pp. 2849–2854).

  • Vaughan, C. L., & O’Malley, M. J. (2005). Froude and the contribution of naval architecture to our understanding of bipedal locomotion. Gait & Posture, 21(3), 350–362.

    Article  Google Scholar 

  • Voloshina, A. S., Kuo, A. D., Daley, M. A., & Ferris, D. P. (2013). Biomechanics and energetics of walking on uneven terrain. Journal of Experimental Biology, 216(21), 3963–3970.

    Google Scholar 

  • Vukobratović, M., & Borovac, B. (2004). Zero-moment point \(-\) Thirty five years of its life. International Journal of Humanoid Robotics, 1(1), 157–173.

    Article  Google Scholar 

  • Westervelt, E., Morris, B., & Farrell, K. (2007). Analysis results and tools for the control of planar bipedal gaits using hybrid zero dynamics. Autonomous Robots, 23(2), 131–145.

    Article  Google Scholar 

  • Yang, T., Westervelt, E. R., Schmiedeler, J. P., & Bockbrader, R. A. (2008). Design and control of a planar bipedal robot ERNIE with parallel knee compliance. Autonomous Robots, 25(4), 317–330.

    Article  Google Scholar 

  • Yokoi, K., Kanehiro, F., Kaneko, K., Kajita, S., Fujiwara, K., & Hirukawa, H. (2004). Experimental study of humanoid robot HRP-1S. The International Journal of Robotics Research, 23(4–5), 351–362.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Fevre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The partial support of the US National Science Foundation under grant IIS-1527393 is gratefully acknowledged.

Appendices

Appendix A: Coupling coefficients for mechanical systems underactuated by one control

The general forms of the A scalar coefficients are

$$\begin{aligned} {\mathbf {A}}_1^{a} ({\mathbf {Y}}_{\! q},{\mathbf {Y}}_{\! p})&= \left( \frac{\partial Y_{\! p}^k}{\partial q_i}Y_{\! q}^i +\varGamma _{\! ij}^k Y_{\! q}^i Y_{\! p}^j \right) M_{kl}Y_{\! a}^{l}, \nonumber \\ {\mathbf {A}}_2^{a} ({\mathbf {Y}}_{\! q},{\mathbf {Y}}^{\! \perp })&= \left( \frac{\partial Y^{\! \perp k}}{\partial q_i}Y_{\! q}^i +\varGamma _{\! ij}^k Y_{\! q}^i Y^{\! \perp j} \right) M_{kl}Y_{\! a}^{l}, \nonumber \\ {\mathbf {A}}_3^{a} ({\mathbf {Y}}^{\! \perp },{\mathbf {Y}}_{\! p})&= \left( \frac{\partial Y_{\! p}^k}{\partial q_i}Y^{\! \perp i} +\varGamma _{\! ij}^k Y^{\! \perp i} Y_{\! p}^j \right) M_{kl}Y_{\! a}^{l}, \nonumber \\ A_4^{a} ({\mathbf {Y}}^{\! \perp },{\mathbf {Y}}^{\! \perp })&= \left( \frac{\partial Y^{\! \perp k}}{\partial q_i}Y^{\! \perp i} +\varGamma _{\! ij}^k Y^{\! \perp i} Y^{\! \perp j} \right) M_{kl}Y_{\! a}^{l}, \nonumber \\ A_5^a( {\mathcal {V}}, {\mathbf {Y}}_{\! a})&= \frac{\partial {\mathcal {V}}}{\partial q_l} Y_{\! a}^{l}. \end{aligned}$$
(55)

where \({\mathbf {A}}_1 \in {\mathbb {R}}^{n_a \times n_a}\), \({\mathbf {A}}_2 \in {\mathbb {R}}^{n_a}\), \({\mathbf {A}}_3 \in {\mathbb {R}}^{n_a}\), \(A_4 \in {\mathbb {R}}\), \(A_5 \in {\mathbb {R}}\).

The general forms of the B scalar coefficients are

$$\begin{aligned} {\mathbf {B}}_1 ({\mathbf {Y}}_{\! q},{\mathbf {Y}}_{\! p})&= \left( \frac{\partial Y_{\! p}^k}{\partial q_i}Y_{\! q}^i +\varGamma _{\! ij}^k Y_{\! q}^i Y_{\! p}^j \right) M_{kl}Y^{\! \perp l}, \nonumber \\ {\mathbf {B}}_2 ({\mathbf {Y}}_{\! q},{\mathbf {Y}}^{\! \perp })&= \left( \frac{\partial Y^{\! \perp k}}{\partial q_i}Y_{\! q}^i +\varGamma _{\! ij}^k Y_{\! q}^i Y^{\! \perp j} \right) M_{kl}Y^{\! \perp l}, \nonumber \\ {\mathbf {B}}_3 ({\mathbf {Y}}^{\! \perp },{\mathbf {Y}}_{\! p})&= \left( \frac{\partial Y_{\! p}^k}{\partial q_i}Y_{\! r}^{\! \perp i} +\varGamma _{\! ij}^k Y^{\! \perp i} Y_{\! p}^j \right) M_{kl}Y^{\! \perp l}, \nonumber \\ B_4 ({\mathbf {Y}}^{\! \perp },{\mathbf {Y}}^{\! \perp })&= \left( \frac{\partial Y^{\! \perp k}}{\partial q_i}Y^{\! \perp i} +\varGamma _{\! ij}^k Y^{\! \perp i} Y^{\! \perp j} \right) M_{kl}Y^{\! \perp l}, \nonumber \\ B_5( {\mathcal {V}}, {\mathbf {Y}}^{\! \perp } )&= \frac{\partial {\mathcal {V}}}{\partial q_l} Y^{{\! \perp }l}. \end{aligned}$$
(56)

Appendix B: Velocity decomposition of 4-DOF mechanical system underactuated by 3

This appendix applies velocity decomposition to a 4-DOF mechanical system underactuated by 3 controls. This derivation is kept general and only requires a symmetric inertia matrix of the form

$$\begin{aligned} {\mathbf {M}} = \begin{pmatrix} M_{11} &{} M_{12} &{} M_{13} &{} M_{14} \\ M_{12} &{} M_{22} &{} M_{23} &{} M_{24} \\ M_{13} &{} M_{23} &{} M_{33} &{} M_{34} \\ M_{14} &{} M_{24} &{} M_{34} &{} M_{44} \end{pmatrix}. \end{aligned}$$
(57)

Assuming that the first joint is actuated, the input matrix \({\mathbf {B}}\) is given by

$$\begin{aligned} {\mathbf {B}} = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \end{aligned}$$
(58)

and the starting list of linearly independant vectors for the uncontrolled directions is

$$\begin{aligned} {\mathbf {F}}_1^\perp = \begin{pmatrix} 0 \\ \alpha \\ 0 \\ 0 \end{pmatrix}, \quad {\mathbf {F}}_2^\perp = \begin{pmatrix} 0 \\ \beta \\ \gamma \\ 0 \end{pmatrix}, \quad {\mathbf {F}}_3^\perp = \begin{pmatrix} 0 \\ \omega \\ \eta \\ \kappa \end{pmatrix}, \end{aligned}$$
(59)

where \(\alpha \), \(\gamma \), \(\kappa \ne 0\) and \(\alpha \), \(\beta \), \(\gamma \), \(\omega \), \(\eta \), \(\kappa \in {\mathbb {R}}\).

The first uncontrolled direction is fairly straightforward to obtain,

$$\begin{aligned} {\mathbf {Y}}_1^\perp = \frac{{\mathbf {F}}_1^\perp }{\sqrt{ ({\mathbf {F}}_1^\perp )^T {\mathbf {M}} {\mathbf {F}}_1^\perp } } = \begin{pmatrix} 0 \\ \frac{\text {sgn}( \alpha )}{\sqrt{M_{22}}} \\ 0 \\ 0 \end{pmatrix}, \end{aligned}$$
(60)

where \(\text {sgn}(\cdot )\) is the sign function given by Eq. (30). As mentioned in Sect. 3.3, the first uncontrolled direction is a function of the sign of \({\mathbf {F}}_1^\perp \) but is independent of its magnitude. Thus, without loss of generality, the choice of \({\mathbf {F}}_1^\perp \) can be reduced to \((0,1,0,0)^T\) or \((0,-1,0,0)^T\).

Following the Gram–Schmidt procedure, the second uncontrolled direction is given by

$$\begin{aligned} {\mathbf {Y}}_2^\perp = \frac{\widetilde{{\mathbf {Y}}}_2^\perp }{|| \widetilde{{\mathbf {Y}}}_2^\perp ||_{\mathbf {M}}^2}, \end{aligned}$$
(61)

where

(62)

As mentioned in Sect. 3.3, the Gram–Schmidt procedure flushes out superfluous components from the direction—in this case the \(\beta \) entries in red—so the final result is independent of \(\beta \). Just like \({\mathbf {Y}}_1^\perp \) was independent of the magnitude of \({\mathbf {F}}_1^\perp \), the final result for \({\mathbf {Y}}_2^\perp \) is independent of the magnitude of \({\mathbf {F}}_2^\perp \),

$$\begin{aligned} {\mathbf {Y}}_2^\perp = \frac{\text {sgn}(\gamma )}{\sqrt{M_{33}-\frac{M_{23}^2}{M_{22}}}} \begin{pmatrix} 0 \\ - \frac{M_{23}}{M_{22}} \\ 1 \\ 0 \end{pmatrix}. \end{aligned}$$
(63)

Similarly, the third uncontrolled direction is given by

$$\begin{aligned} {\mathbf {Y}}_3^\perp = \frac{\widetilde{{\mathbf {Y}}}_3^\perp }{|| \widetilde{{\mathbf {Y}}}_3^\perp ||_{\mathbf {M}}^2}, \end{aligned}$$
(64)

where

(65)

and

$$\begin{aligned} a_1&= \frac{M_{23}(M_{23}M_{24}-M_{22}M_{34})}{M_{22}(M_{22}M_{33}-M_{23}^2)} \nonumber \\ a_2&= \frac{M_{23}M_{24}-M_{22}M_{34}}{M_{23}^2-M_{22}M_{33}}. \end{aligned}$$
(66)

The direction is ultimately a function of the sign of \(\kappa \) only.

$$\begin{aligned} {\mathbf {Y}}_3^\perp = a_3 \, \text {sgn}(\kappa ) \begin{pmatrix} 0 \\ \frac{ M_{24} M_{33} - M_{23} M_{34} }{M_{23}^2 - M_{22} M_{33}} \\ \frac{ -M_{23} M_{24} + M_{22} M_{34} }{M_{23}^2 - M_{22} M_{33}} \\ 1 \end{pmatrix}, \end{aligned}$$
(67)

where

$$\begin{aligned} a_3 = \frac{1}{\sqrt{\frac{M_{24}^2 M_{33} - 2 M_{23} M_{24} M_{34} + M_{23}^2 M_{44} + M_{22} (M_{34}^2 - M_{33} M_{44})}{M_{23}^2 - M_{22} M_{33}}}} \end{aligned}$$
(68)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fevre, M., Goodwine, B. & Schmiedeler, J.P. A unified framework for measuring interplane and intraplane coupling in spatial biped robots. Auton Robot 46, 831–849 (2022). https://doi.org/10.1007/s10514-022-10054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-022-10054-9

Keywords

Navigation