Skip to main content

Advertisement

Log in

AUV navigation using cues in the sand ripples

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Subsea navigation by autonomous underwater vehicles (AUVs) is a demanding task that involves the integration of inertial sensors, gyrocompasses, Doppler velocity loggers, and reference from acoustic beacons. In this paper, we propose to augment this information by providing an external measurement of heading change. We rely on the direction of sand ripples, which are abundant on the seabed near the shore and whose direction is, locally, constant. Thus, any apparent change in their directivity, as detected by the AUV, would reflect as a change in the vehicle’s heading. Considering this, we developed a mechanism that detects regions of interest (ROIs) containing sand ripples within a synthetic aperture sonar (SAS) image, segments the ROI into highlight and shadow, and evaluates the angle difference between ROIs within two consecutive SAS images. For detection of sand ripples and estimation of angle difference, we employ two deep neural networks, while for segmentation we formulate a fuzzy-logic clustering. Taking advantage of a transfer learning approach, we trained the deep networks on simulated SAS images and on a large database of 2088 real SAS images, which we share for reproducibility. Results from real SAS images from three different sites show a good trade-off between precision and recall for sand-ripple detection, and an error of a few degrees in the heading change estimation, which well exceeds a geometrical-based benchmark. We also show performance from a real-time experiment for which we implemented our method on an AUV and estimated its heading change on-the-fly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abu, A., & Diamant, R. (2020). Enhanced fuzzy-based local information algorithm for sonar image segmentation. IEEE Transactions on Image Processing, 29, 445–460.

    Article  MathSciNet  MATH  Google Scholar 

  • Agarap, A. F. (2018). Deep learning using rectified linear units (ReLU). arXiv preprint arXiv:1803.08375

  • Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining, 2623–2631.

  • Chen, J., Yuan, Z., Peng, J., Chen, L., Huang, H., Zhu, J., Liu, Y., & Li, H. (2020). Dasnet: Dual attentive fully convolutional siamese networks for change detection in high-resolution satellite images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 1194–1206.

    Article  Google Scholar 

  • Cobb, J. T., Slatton, K. C., & Dobeck, G. J. (2010). A parametric model for characterizing seabed textures in synthetic aperture sonar images. IEEE Journal of Oceanic Engineering, 35(2), 250–266.

    Article  Google Scholar 

  • Combettes, C., & Renaudin, V. (2015). Comparison of misalignment estimation techniques between handheld device and walking directions. In: International Conference on Indoor Positioning and Indoor Navigation, 13–16.

  • Cong, W., Yongfu, S., Zhenwen, L., Qikun, Z., & Zhipeng, Z. (2019). Experimental study on the formation and migration of submarine sandwaves under wave-only and combined wave-current conditions. Marine Georesources & Geotechnology., 39(3), 312–321.

    Article  Google Scholar 

  • Costanzi, R., Fenucci, D., Caiti, A., Fanelli, F., Monni, N., Ridolfi, A., Allotta, B. (2017). Magnetometers independent heading estimation strategy for UUV based on position and speed observations. In: OCEANS 2017 - Aberdeen, 1–5, https://doi.org/10.1109/OCEANSE.2017.8084994.

  • Crawford, A., & Skarke, A. (2014). Automatic detection of sand ripple features in sidescan sonar imagery. In: 2014 Oceans - St. John’s, 1–5, https://doi.org/10.1109/OCEANS.2014.7003117.

  • Deng, Z., Guofeng, W., Ying, H., & Di, W. (2015). Heading estimation for indoor pedestrian navigation using a smartphone in the pocket. Sensors, 15, 21518–21536.

    Article  Google Scholar 

  • Diamant, R. (2022). Link to the dataset of sand-ripples. https://drive.google.com/drive/folders/1TBPvrziLJqQW8FZw4KzKMhyPPpySIviI?usp=sharing, Accessed: 2021 Jun 27.

  • Dutta, A., Gupta, A., & Zissermann, A. (2016). VGG image annotator (VIA). http://www.robots.ox.ac.uk/ vgg/software/via/, version: 2.0.11, Accessed: 9,6,2022.

  • Fallon, M. F., Folkesson, J., McClelland, H., & Leonard, J. J. (2013). Relocating underwater features autonomously using sonar-based SLAM. IEEE Journal of Oceanic Engineering, 38(3), 500–513. https://doi.org/10.1109/JOE.2012.2235664

    Article  Google Scholar 

  • Fezzani, R., Zerr, B., Mansour, A., Legris, M., & Vrignaud, C. (2019). Fusion of swath bathymetric data: Application to AUV rapid environment assessment. IEEE Journal of Oceanic Engineering, 44(1), 111–120. https://doi.org/10.1109/JOE.2017.2773139

    Article  Google Scholar 

  • Fischer, P., Dosovitskiy, A., & Brox, T. (2015). Image orientation estimation with convolutional networks. In: German Conference on Pattern Recognition, Springer, 368–378.

  • Fossen, T., Pettersen, K., & Galeazzi, R. (2015). Line-of-Sight path following for Dubins paths with adaptive sideslip compensation of drift forces. IEEE Transactions on Control Systems Technology, 23, 820–827.

    Article  Google Scholar 

  • Han, R., Ortiz, M. (2014). Smartphone based gait analysis using STFT and wavelet transform for indoor navigation. In: International Conference on indoor positioning and indoor navigation.

  • Heathershaw, A. (1982). Seabed-wave resonance and sand bar growth. Nature, 296(5855), 343–345.

    Article  Google Scholar 

  • Khan, A., Ali, S. S. A., Meriaudeau, F., Malik, A. S., Soon, L. S., & Seng, T. N. (2017). Visual feedback-based heading control of autonomous underwater vehicle for pipeline corrosion inspection. International Journal of Advanced Robotic Systems, 14(3), 1729881416658171.

    Article  Google Scholar 

  • Klein, I., & Diamant, R. (2018). Observability analysis of heading aided INS for a maneuvering AUV. Navigation, Journal of the Institute of Navigation, 65(1), 73–82.

    Article  Google Scholar 

  • Klemm, R., Lehmann, B., Kraus, D. (2015). Dual-tree complex wavelet transformation based sand ripple suppression. In: OCEANS 2015 - Genova, 1–6, https://doi.org/10.1109/OCEANS-Genova.2015.7271570.

  • Kourogi, M., & Kurata, T. (2014). A method of pedestrian dead reckoning for smart phones using frequency domain analysis on patterns of acceleration and angular velocity. in Position (pp. 164–168). IEEE/ION: Location and Navigation Symposium (PLANS).

  • Krinidis, S., & Chatzis, V. (2010). A robust fuzzy local information c-means clustering algorithm. IEEE Transactions on Image Processing, 19(5), 1328–1337.

    Article  MathSciNet  MATH  Google Scholar 

  • Kunze, K., Lukowicz, P., Partridge, K., Begole, B. (2009). Which way am i facing: Inferring horizontal device orientation from an accelerometer signal. In: Proceedings of the International Symposium on Wearable Computers, Linz, Austria, 149–150.

  • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

    Article  Google Scholar 

  • Norgren, P., & Skjetne, R. (2018). A multibeam-based SLAM algorithm for iceberg mapping using AUVs. IEEE Access, 6, 26318–26337. https://doi.org/10.1109/ACCESS.2018.2830819

    Article  Google Scholar 

  • Paull, L., Saeedi, S., Seto, M., & Li, H. (2014). Auv navigation and localization: A review. IEEE Journal of Oceanic Engineering, 39(1), 131–149. https://doi.org/10.1109/JOE.2013.2278891

    Article  Google Scholar 

  • Putri, T. W. O., Latifa, U., Trilaksono, B. R., & Hidayat, E. M. (2017). Modelling and identification of underwater glider for heading angle correction. International Journal of Modeling and Optimization, 7(2), 65–69.

    Article  Google Scholar 

  • Rupeng, W., Ye, L., Teng, M., Zheng, C., Yusen, G., & Pengfei, X. (2020). Improvements to terrain aided navigation accuracy in deep-sea space by high precision particle filter initialization. IEEE Access, 8, 13029–13042. https://doi.org/10.1109/ACCESS.2019.2960563

    Article  Google Scholar 

  • Schnipper, T., Mertens, K., Ellegaard, C., & Bohr, T. (2008). Amplitude equation and long-range interactions in underwater sand ripples in one dimension. Physical Review E, 78(4), 047301.

    Article  Google Scholar 

  • Song, S., Liu, J., Guo, J., Wang, J., Xie, Y., & Cui, J. H. (2020). Neural-network-based AUV navigation for fast-changing environments. IEEE Internet of Things Journal, 7(10), 9773–9783. https://doi.org/10.1109/JIOT.2020.2988313

    Article  Google Scholar 

  • Soulsby, R., Whitehouse, R., & Marten, K. (2012). Prediction of time-evolving sand ripples in shelf seas. Continental Shelf Research, 38, 47–62.

    Article  Google Scholar 

  • Stegner, A., & Wesfreid, J. E. (1999). Dynamical evolution of sand ripples under water. Physical review E, 60(4), R3487.

    Article  Google Scholar 

  • Stutters, L., Liu, H., Tiltman, C., & Brown, D. J. (2008). Navigation technologies for autonomous underwater vehicles. IEEE Transactions on Systems, Man, and Cybernetics, Part C., 38(4), 581–589. https://doi.org/10.1109/TSMCC.2008.919147

    Article  Google Scholar 

  • Tang, D., Henyey, F. S., Hefner, B. T., & Traykovski, P. A. (2009). Simulating realistic-looking sediment ripple fields. IEEE Journal of Oceanic Engineering, 34(4), 444–450. https://doi.org/10.1109/JOE.2009.2025905

    Article  Google Scholar 

  • Tang, D., Williams, K. L., & Thorsos, E. I. (2009). Utilizing high-frequency acoustic backscatter to estimate bottom sand ripple parameters. IEEE Journal of Oceanic Engineering, 34(4), 431–443. https://doi.org/10.1109/JOE.2009.2015402

    Article  Google Scholar 

  • Testolin, A., & Diamant, R. (2020). Combining denoising autoencoders and dynamic programming for acoustic detection and tracking of underwater moving targets. Sensors, 20(10), 2945.

    Article  Google Scholar 

  • Testolin, A., Kipnis, D., & Diamant, R. (2020). Detecting submerged objects using active acoustics and deep neural networks: a test case for pelagic fish. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2020.3044397

    Article  Google Scholar 

  • Wang, X., Zhang, G., Sun, Y., Cao, J., Wan, L., Sheng, M., & Liu, Y. (2019). AUV near-wall-following control based on adaptive disturbance observer. Ocean Engineering, 190, 106429.

    Article  Google Scholar 

  • Williams, D. P. (2012). AUV-enabled adaptive underwater surveying for optimal data collection. Intelligent Service Robotics, 5(1), 33–54.

    Article  Google Scholar 

  • Williams, D. P. (2015). Fast target detection in synthetic aperture sonar imagery: A new algorithm and large-scale performance analysis. IEEE Journal of Oceanic Engineering, 40(1), 71–92. https://doi.org/10.1109/JOE.2013.2294532

    Article  Google Scholar 

  • Williams, D.P. (2016). Underwater target classification in synthetic aperture sonar imagery using deep convolutional neural networks. In: 2016 23rd international conference on pattern recognition (ICPR), IEEE, 2497–2502.

  • Williams, D.P., & Coiras, E. (2010). On sand ripple detection in synthetic aperture sonar imagery. In: 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

  • Zagoruyko, S., & Komodakis, N. (2015). Learning to compare image patches via convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 4353–4361.

  • Zbontar, J., LeCun, Y., et al. (2016). Stereo matching by training a convolutional neural network to compare image patches. Journal of Machine Learning Research, 17(1), 2287–2318.

    MATH  Google Scholar 

  • Zhang, Z. (2018). Improved adam optimizer for deep neural networks. In: 2018 IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), IEEE, 1–2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roee Diamant.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalev, H., Nagar, L., Abu, A. et al. AUV navigation using cues in the sand ripples. Auton Robot 47, 95–107 (2023). https://doi.org/10.1007/s10514-022-10069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-022-10069-2

Keywords

Navigation