Skip to main content
Log in

Underwater visual mapping of curved ship hull surface using stereo vision

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

In this paper, we present an underwater visual mapping method for the three-dimensional (3D) reconstruction of a moderately curved ship hull surface using a stereo vision system. The proposed approach estimates the local hull surface by extracting 3D point clouds from stereo image pairs, and the relative poses between the pairs are calculated by matching the corresponding point cloud points. A surfel model is extracted from each point cloud set by fitting a plane model, and a smoothness factor is applied between nearby surfels for a smooth 3D surface reconstruction. The camera trajectory and the surfel map are optimized through the graph-based simultaneous localization and mapping (SLAM) framework. A 3D surface mesh is generated with the optimized surfel poses, and the corresponding images are projected into the surface plane, texturing the surface. The performance of the proposed approach is shown with experimental data obtained from an actual ship hull inspection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Armesto, L., Minguez, J. & Montesano, L. (2010). A generalization of the metric-based iterative closest point technique for 3d scan matching. In 2010 IEEE International Conference on Robotics and Automation, pp. 1367–1372.

  • Bay, H., Tuytelaars, T., & Van Gool, L. (2006). Surf: Speeded up robust features. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision - ECCV 2006 (pp. 404–417). Springer.

    Chapter  Google Scholar 

  • Chung, D., & Kim, J. (2018). Pose estimation considering an uncertainty model of stereo vision for in-water ship hull inspection. IFAC-PapersOnLine, 51(29), 400–405. https://doi.org/10.1016/j.ifacol.2018.09.454.

    Article  Google Scholar 

  • Engel, J., Koltun, V., & Cremers, D. (2018). Direct sparse odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence, 40(3), 611–625. https://doi.org/10.1109/TPAMI.2017.2658577.

    Article  Google Scholar 

  • Eustice, R. M., Pizarro, O., & Singh, H. (2008). Visually augmented navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2), 103–122. https://doi.org/10.1109/JOE.2008.923547

    Article  Google Scholar 

  • Galvez-López, D., & Tardos, J. D. (2012). Bags of binary words for fast place recognition in image sequences. IEEE Transactions on Robotics, 28(5), 1188–1197. https://doi.org/10.1109/TRO.2012.2197158

    Article  Google Scholar 

  • Garcia, R., Puig, J., Ridao, P., & Cufi, X. (2002). Augmented state kalman filtering for auv navigation. In Proceedings 2002 IEEE International Conference on Robotics and Automation, Volume 4, pp. 4010–4015 vol.4.

  • Hagen, P., Storkersen, N., Vestgard, K., & Kartvedt, P. (2003). The hugin 1000 autonomous underwater vehicle for military applications. In Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492), Volume 2, pp. 1141–1145 Vol.2.

  • Haralick, R.M. (1994). Propagating covariance in computer vision. In Proceedings of 12th International Conference on Pattern Recognition, Volume 1, pp. 493–498 vol.1.

  • Hong, S., Chung, D., Kim, J., Kim, Y., Kim, A., & Yoon, H. (2019). In-water visual ship hull inspection using a hover-capable underwater vehicle with stereo vision. Journal of Field Robotics, 36(3), 531–546. https://doi.org/10.1002/rob.21841

    Article  Google Scholar 

  • Hong, S., & Kim, J. (2020). Three-dimensional visual mapping of underwater ship hull surface using piecewise-planar slam. International Journal of Control, Automation and Systems, 18(3), 564–574. https://doi.org/10.1007/s12555-019-0646-8

    Article  Google Scholar 

  • Jacobi, M. (2015). Autonomous inspection of underwater structures. Robotics and Autonomous Systems, 67, 80–86. https://doi.org/10.1016/j.robot.2014.10.006

    Article  Google Scholar 

  • Johnson-Roberson, M., Pizarro, O., Williams, S. B., & Mahon, I. (2010). Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. Journal of Field Robotics, 27(1), 21–51. https://doi.org/10.1002/rob.20324

    Article  Google Scholar 

  • Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J., & Dellaert, F. (2011). isam2: Incremental smoothing and mapping with fluid relinearization and incremental variable reordering. In 2011 IEEE International Conference on Robotics and Automation, pp. 3281–3288.

  • Kazhdan, M., Bolitho, M., & Hoppe, H. (2006). Poisson surface reconstruction. In Proceedings of the Fourth Eurographics Symposium on Geometry Processing, SGP ’06, Goslar, DEU, pp. 61-70. Eurographics Association.

  • Kim, A. & Eustice, R. (2009). Pose-graph visual slam with geometric model selection for autonomous underwater ship hull inspection. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1559–1565.

  • Kim, A., & Eustice, R. M. (2013). Real-time visual slam for autonomous underwater hull inspection using visual saliency. IEEE Transactions on Robotics, 29(3), 719–733. https://doi.org/10.1109/TRO.2012.2235699

    Article  Google Scholar 

  • Kimball, P. W., & Rock, S. M. (2015). Mapping of translating, rotating icebergs with an autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 40(1), 196–208. https://doi.org/10.1109/JOE.2014.2300396

    Article  Google Scholar 

  • Lowe, D.G. 2004, November. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2): 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 .

  • Mur-Artal, R., & Tardós, J. D. (2017). Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras. IEEE Transactions on Robotics, 33(5), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

    Article  Google Scholar 

  • Negahdaripour, S., & Firoozfam, P. (2006). An rov stereovision system for ship-hull inspection. IEEE Journal of Oceanic Engineering, 31(3), 551–564. https://doi.org/10.1109/JOE.2005.851391

    Article  Google Scholar 

  • Ozog, P. & Eustice, R.M. (2013). On the importance of modeling camera calibration uncertainty in visual slam. In 2013 IEEE International Conference on Robotics and Automation, pp. 3777–3784.

  • Ozog, P. & Eustice, R.M. (2013). Real-time slam with piecewise-planar surface models and sparse 3d point clouds. In 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1042–1049.

  • Roman, C., & Mather, R. (2010). Autonomous underwater vehicles as tools for deep-submergence archaeology. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 224(4), 327–340. https://doi.org/10.1243/14750902JEME202

    Article  Google Scholar 

  • Rublee, E., Rabaud, V., Konolige, K., & Bradski, G. (2011). Orb: An efficient alternative to sift or surf. In 2011 International Conference on Computer Vision, pp. 2564–2571.

  • Schultz, M. P., Bendick, J. A., Holm, E. R., & Hertel, W. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27(1), 87–98. https://doi.org/10.1080/08927014.2010.542809

    Article  Google Scholar 

  • Singh, H., Roman, C., Pizarro, O., Eustice, R., & Can, A. (2007). Towards high-resolution imaging from underwater vehicles. The International Journal of Robotics Research, 26(1), 55–74. https://doi.org/10.1177/0278364907074473

    Article  Google Scholar 

  • Teixeira, P.V., Fourie, D., Kaess, M., & Leonard, J.J. (2019). Dense, sonar-based reconstruction of underwater scenes. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 8060–8066.

  • Zeisl, B., Georgel, P.F., Schweiger, F., Steinbach, E., & Navab, N. (2009). Estimation of location uncertainty for scale invariant feature points. In Proceedings of the British Machine Vision Conference, pp. 57.1–57.12. BMVA Press.

  • Zhang, J., & Singh, S. (2014), jul. LOAM: Lidar odometry and mapping in real-time. In Robotics: Science and Systems X. Robotics: Science and Systems Foundation.

  • Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 1330–1334. https://doi.org/10.1109/34.888718

    Article  Google Scholar 

  • Zuiderveld, K. (1994). Contrast limited adaptive histogram equalization, In Graphics Gems, ed. Heckbert, P.S., 474–485. Academic Press. https://doi.org/10.1016/B978-0-12-336156-1.50061-6.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwhan Kim.

Ethics declarations

Competing Interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D., Kim, J. Underwater visual mapping of curved ship hull surface using stereo vision. Auton Robot 47, 109–120 (2023). https://doi.org/10.1007/s10514-022-10071-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-022-10071-8

Keywords