Skip to main content
Log in

Data-driven gait model for bipedal locomotion over continuous changing speeds and inclines

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

Trajectory generation for biped robots is very complex due to the challenge posed by real-world uneven terrain. To address this complexity, this paper proposes a data-driven Gait model that can handle continuously changing conditions. Data-driven approaches are used to incorporate the joint relationships. Therefore, the deep learning methods are employed to develop seven different data-driven models, namely DNN, LSTM, GRU, BiLSTM, BiGRU, LSTM+GRU, and BiLSTM+BiGRU. The dataset used for training the Gait model consists of walking data from 10 able subjects on continuously changing inclines and speeds. The objective function incorporates the standard error from the inter-subject mean trajectory to guide the Gait model to not accurately follow the high variance points in the gait cycle, which helps in providing a smooth and continuous gait cycle. The results show that the proposed Gait models outperform the traditional finite state machine (FSM) and Basis models in terms of mean and maximum error summary statistics. In particular, the LSTM+GRU-based Gait model provides the best performance compared to other data-driven models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code availability

Not applicable.

Abbreviations

DNN:

Deep neural network

LSTM:

Long short term memory

GRU:

Gated recurrent units

BiLSTM:

Bidirectional LSTM

BiGRU:

Bidirectional GRU

COMBO BI:

BiLSTM + BiGRU

FSM:

Finite state machine

MAE:

Mean absolute error

MSE:

Mean squared error

SE:

Standard error

References

  • Allen, D. M. (1971). Mean square error of prediction as a criterion for selecting variables. Technometrics, 13(3), 469–475. https://doi.org/10.1080/00401706.1971.10488811

    Article  MATH  Google Scholar 

  • Aoi, S., & Tsuchiya, K. (2011). Generation of bipedal walking through interactions among the robot dynamics, the oscillator dynamics, and the environment: Stability characteristics of a five-link planar biped robot. Autonomous Robots, 30(2), 123–141.

    Article  Google Scholar 

  • Burman, V., & Kumar, R. (2021). Wheel robot review. Innovations in cyber physical systems (pp. 781–791). Singapore: Springer.

    Chapter  Google Scholar 

  • Canziani, A., Paszke, A., & Culurciello, E., (2016). An analysis of deep neural network models for practical applications. arXiv preprint arXiv:1605.07678.

  • Castillo, G. A., Weng, B., Zhang, W., & Hereid, A. (2022). Reinforcement learning-based cascade motion policy design for robust 3D bipedal locomotion. IEEE Access, 10, 20135–20148.

    Article  Google Scholar 

  • Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?-Arguments against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014

    Article  Google Scholar 

  • Chai, L., Du, J., Liu, Q. F., & Lee, C. H. (2019). Using generalized Gaussian distributions to improve regression error modeling for deep learning-based speech enhancement. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 27(12), 1919–1931. https://doi.org/10.1109/TASLP.2019.2935803

    Article  Google Scholar 

  • Coyle, E. J., & Lin, J. H. (1988). Stack filters and the mean absolute error criterion. IEEE Transactions on Acoustics, Speech, and Signal Processing, 36(8), 1244–1254. https://doi.org/10.1109/29.1653

    Article  MATH  Google Scholar 

  • Dey, R., & Salem, F.M., (2017). Gate-variants of gated recurrent unit (GRU) neural networks. In 2017 IEEE 60th international midwest symposium on circuits and systems (MWSCAS), IEEE (pp. 1597–1600).

  • Doerschuk, P. I., Nguyen, V., & Li, A. (2002). A scalable intelligent takeoff controller for a simulated running jointed leg. Applied Intelligence, 17(1), 75–87. https://doi.org/10.1023/A:1015731916039

    Article  MATH  Google Scholar 

  • Dong, Y., (2018). A survey on neural network-based summarization methods. arXiv:1804.04589.

  • Embry, K.R., Villarreal, D.J., Gregg, R.D., (2016). A unified parameterization of human gait across ambulation modes. In 38th annual international conference of the IEEE engineering in medicine and biology society, IEEE (pp. 2179–2183).

  • Embry, K., Villarreal, D., Macaluso, R., & Gregg, R. (2018). The effect of walking incline and speed on human leg kinematics, kinetics, and EMG. IEEE Dataport. https://doi.org/10.21227/gk32-e868

  • Embry, K. R., Villarreal, D. J., Macaluso, R. L., & Gregg, R. D. (2018). Modeling the kinematics of human locomotion over continuously varying speeds and inclines. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(12), 2342–2350. https://doi.org/10.1109/TNSRE.2018.2879570

    Article  Google Scholar 

  • Gao, Y., Wei, W., Wang, X., Li, Y., Wang, D., & Yu, Q. (2021). Feasibility, planning and control of ground-wall transition for a suctorial hexapod robot. Applied Intelligence, 51, 1–19. https://doi.org/10.1007/s10489-020-01955-2

    Article  Google Scholar 

  • Gouk, H., Frank, E., Pfahringer, B., & Cree, M. J. (2021). Regularisation of neural networks by enforcing lipschitz continuity. Machine Learning, 110(2), 393–416. https://doi.org/10.1007/s10994-020-05929-w

    Article  MathSciNet  MATH  Google Scholar 

  • Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J. (2016). LSTM: A search space odyssey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2222–2232. https://doi.org/10.1109/TNNLS.2016.2582924

    Article  MathSciNet  Google Scholar 

  • Hildebrandt, A. C., Schwerd, S., Wittmann, R., Wahrmann, D., Sygulla, F., Seiwald, P., & Buschmann, T. (2019). Kinematic optimization for bipedal robots: A framework for real-time collision avoidance. Autonomous Robots, 43(5), 1187–1205.

    Article  Google Scholar 

  • Holgate, M A., Sugar, T G., Bohler, A.W., (2009). A novel control algorithm for wearable robotics using phase plane invariants. In 2009 IEEE international conference on robotics and automation, IEEE, pp 3845-3850.

  • Hosseinmemar, A., Baltes, J., Anderson, J., Lau, M. C., Lun, C. F., & Wang, Z. (2019). Closed-loop push recovery for inexpensive humanoid robots. Applied Intelligence, 49(11), 3801–3814. https://doi.org/10.1007/s10489-019-01446-z

    Article  Google Scholar 

  • Huang, Z., Xu, W., & Yu, K., (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv:1508.01991.

  • Huang, C. F., & Yeh, T. J. (2019). Anti slip balancing control for wheeled inverted pendulum vehicles. IEEE Transactions on Control Systems Technology, 28(3), 1042–1049. https://doi.org/10.1109/TCST.2019.2891522

    Article  Google Scholar 

  • Huang, B., Xiong, C., Chen, W., Liang, J., Sun, B. Y., & Gong, X. (2021). Common kinematic synergies of various human locomotor behaviours. Royal Society open science, 8(4), 210161. https://doi.org/10.1098/rsos.210161

    Article  Google Scholar 

  • Juang, C. F., & Yeh, Y. T. (2017). Multiobjective evolution of biped robot gaits using advanced continuous ant-colony optimized recurrent neural networks. IEEE Transactions on Cybernetics, 48(6), 1910–1922. https://doi.org/10.1109/TCYB.2017.2718037

    Article  Google Scholar 

  • Kim, J. H., Lee, J., & Oh, Y. (2018). A theoretical framework for stability regions for standing balance of humanoids based on their LIPM treatment. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4569–4586. https://doi.org/10.1109/TSMC.2018.2855190

    Article  Google Scholar 

  • Kim, D., Jorgensen, S. J., Lee, J., Ahn, J., Luo, J., & Sentis, L. (2020). Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control. The International Journal of Robotics Research, 39(8), 936–956. https://doi.org/10.1177/0278364920918014

    Article  Google Scholar 

  • Kim, N., Jeong, B., & Park, K. (2021). A novel methodology to explore the periodic gait of a biped walker under uncertainty using a machine learning algorithm. Robotica. https://doi.org/10.1017/S0263574721000424

    Article  Google Scholar 

  • Kim, K., Spieler, P., Lupu, E. S., Ramezani, A., & Chung, S. J. (2021). A bipedal walking robot that can fly, slackline, and skateboard. Science Robotics., 6(59), eabf8136. https://doi.org/10.1126/scirobotics.abf8136

    Article  Google Scholar 

  • Kormushev, P., Ugurlu, B., Caldwell, D. G., & Tsagarakis, N. G. (2019). Learning to exploit passive compliance for energy-efficient gait generation on a compliant humanoid. Autonomous Robots, 43(1), 79–95.

    Article  Google Scholar 

  • Kuffner, J. J., Kagami, S., Nishiwaki, K., Inaba, M., & Inoue, H. (2002). Dynamically-stable motion planning for humanoid robots. Autonomous robots, 12(1), 105–118.

    Article  MATH  Google Scholar 

  • Kwon, O., & Park, J. H. (2009). Asymmetric trajectory generation and impedance control for running of biped robots. Autonomous Robots, 26(1), 47–78.

    Article  Google Scholar 

  • Lee, Y., Hwang, S., & Park, J. (2016). Balancing of humanoid robot using contact force/moment control by task-oriented whole body control framework. Autonomous Robots, 40(3), 457–472.

    Article  Google Scholar 

  • Li, T. H. S., Su, Y. T., Lai, S. W., & Hu, J. J. (2010). Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 41(3), 736–748. https://doi.org/10.1109/TSMCB.2010.2089978

    Article  Google Scholar 

  • Li, Z., Tsagarakis, N. G., & Caldwell, D. G. (2013). Walking pattern generation for a humanoid robot with compliant joints. Autonomous Robots, 35(1), 1–14.

    Article  Google Scholar 

  • Li, T. H. S., Kuo, P. H., Cheng, C. H., Hung, C. C., Luan, P. C., & Chang, C. H. (2020). Sequential sensor fusion-based real-time LSTM gait pattern controller for biped robot. IEEE Sensors Journal, 21(2), 2241–2255. https://doi.org/10.1109/JSEN.2020.3016968

    Article  Google Scholar 

  • Liu, C., Zhang, T., Liu, M., & Chen, Q. (2020). Active balance control of humanoid locomotion based on foot position compensation. Journal of Bionic Engineering, 17(1), 134–147.

    Article  Google Scholar 

  • Liu, J., Chen, H., Wensing, P. M., & Zhang, W. (2021). Instantaneous capture input for balancing the variable height inverted pendulum. IEEE Robotics and Automation Letters, 6(4), 7421–7428. https://doi.org/10.1109/LRA.2021.3097074

    Article  Google Scholar 

  • Macaluso, R., Embry, K., Villarreal, D. J., & Gregg, R. D. (2021). Parameterizing human locomotion across quasi-random treadmill perturbations and inclines. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 29, 508–516. https://doi.org/10.1109/TNSRE.2021.3057877

    Article  Google Scholar 

  • Mangasarian, O. L., & Shiau, T. H. (1987). Lipschitz continuity of solutions of linear inequalities, programs and complementarity problems. SIAM Journal on Control and Optimization, 25(3), 583–595. https://doi.org/10.1137/0325033

    Article  MathSciNet  MATH  Google Scholar 

  • Morris, K. J., Samonin, V., Baltes, J., Anderson, J., & Lau, M. C. (2019). A robust interactive entertainment robot for robot magic performances. Applied Intelligence, 49(11), 3834–3844. https://doi.org/10.1007/s10489-019-01565-7

    Article  Google Scholar 

  • Pon, MZ, KK, KP., (2021). Hyperparameter tuning of deep learning models in keras. Sparklinglight Transactions on Artificial Intelligence and Quantum Computing (STAIQC). 1(1):36-40. https://doi.org/10.55011/staiqc.2021.1104

  • Qi, J., Du, J., Siniscalchi, S. M., Ma, X., & Lee, C. H. (2020). On mean absolute error for deep neural network based vector-to-vector regression. IEEE Signal Processing Letters, 27, 1485–1489. https://doi.org/10.1109/LSP.2020.3016837

    Article  MATH  Google Scholar 

  • Quintero, D., Villarreal, D. J., Lambert, D. J., Kapp, S., & Gregg, R. D. (2018). Continuous-phase control of a powered knee-ankle prosthesis: Amputee experiments across speeds and inclines. IEEE Transactions on Robotics, 34(3), 686–701. https://doi.org/10.1109/TRO.2018.2794536

    Article  Google Scholar 

  • Razavi, H., Faraji, S., & Ijspeert, A. (2019). From standing balance to walking: A single control structure for a continuum of gaits. The International Journal of Robotics Research, 38(14), 1695–1716. https://doi.org/10.1177/0278364919875205

    Article  Google Scholar 

  • Shrestha, A., & Mahmood, A. (2019). Review of deep learning algorithms and architectures. IEEE Access, 7, 53040–53065. https://doi.org/10.1109/ACCESS.2019.2912200

    Article  Google Scholar 

  • Siekmann, J., Godse, Y., Fern, A., & Hurst, J., (2021). Sim-to-real learning of all common bipedal gaits via periodic reward composition. In 2021 IEEE international conference on robotics and automation (ICRA), pp. 7309-7315.

  • Simon, A. M., Ingraham, K. A., Fey, N. P., Finucane, S. B., Lipschutz, R. D., Young, A. J., & Hargrove, L. J. (2014). Configuring a powered knee and ankle prosthesis for transfemoral amputees within five specific ambulation modes. PloS One, 9(6), e99387. https://doi.org/10.1371/journal.pone.0099387

    Article  Google Scholar 

  • Singh, B., Gupta, V., & Kumar, R. (2021). Probabilistic modeling of human locomotion for biped robot trajectory generation. In 2021 IEEE 8th Uttar Pradesh section international conference on electrical electronics and computer engineering (UPCON) (pp. 1–6).

  • Singh, B., Kumar, R., Singh, V. P., et al. (2021). Reinforcement learning in robotic applications: A comprehensive survey. Artificial Intelligence Review. https://doi.org/10.1007/s10462-021-09997-9

    Article  Google Scholar 

  • Singh, B., Vijayvargiya, A., & Kumar, R. (2022). Kinematic modeling for biped robot gait trajectory using machine learning techniques. Journal of Bionic Engineering, 19, 355–369. https://doi.org/10.1007/s42235-021-00142-4

    Article  Google Scholar 

  • Sun, Y., Tang, H., Tang, Y., Zheng, J., Dong, D., Chen, X., & Luo, J. (2021). Review of recent progress in robotic knee prosthesis related techniques: Structure, actuation and control. Journal of Bionic Engineering, 18(4), 764–785.

    Article  Google Scholar 

  • Vicon Motion Systems Ltd. (2018) Vicon nexus reference guide. https://docs.vicon.com/display/Nexus26/Vicon+Nexus+Reference+Guide

  • Wang, L., Liu, Z., Chen, C. P., & Zhang, Y. (2014). Interval type-2 fuzzy weighted support vector machine learning for energy efficient biped walking. Applied Intelligence, 40(3), 453–463. https://doi.org/10.1007/s10489-013-0472-2

    Article  Google Scholar 

  • Wang, Z., He, B., Zhou, Y., Yuan, T., Xu, S., & Shao, M. (2018). An experimental analysis of stability in human walking. Journal of Bionic Engineering, 15(5), 827–838.

    Article  Google Scholar 

  • Wang, K., Ren, L., Qian, Z., Liu, J., Geng, T., & Ren, L. (2021). Development of a 3D printed bipedal robot: Towards humanoid research platform to study human musculoskeletal biomechanics. Journal of Bionic Engineering, 18(1), 150–170.

    Article  Google Scholar 

  • Yamaguchi, J. I., & Takanishi, A. (1997). Development of a leg part of a humanoid robot-development of a biped walking robot adapting to the humans’ normal living floor. Autonomous Robots, 4(4), 369–385.

    Article  Google Scholar 

  • Yang, W., Tan, R. T., Wang, S., Fang, Y., & Liu, J. (2021). Single image deraining: From model-based to data-driven and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 4059–4077. https://doi.org/10.1109/TPAMI.2020.2995190

    Article  Google Scholar 

  • Zhou, C., Wang, X., Li, Z., & Tsagarakis, N. (2017). Overview of gait synthesis for the humanoid COMAN. Journal of Bionic Engineering, 14(1), 15–25.

    Article  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Bharat Singh has contributed to develop the methodology, analysis, and drafting of this paper by carrying out a thorough study of the literature regarding the mentioned topics. He has also contributed in the sense of presenting a comparison between the various techniques of gait models. All authors read and approved the final manuscript. Mr. Suchit Patel has contributed on the development of gait model. Mr. Ankit Vijayvargiya has contributed in analyzing the results and provided the suggestion in developing the gait models. Prof. Rajesh Kumar has also contributed this work by supervising all aspects related to methodology, analysis and drafting.

Corresponding author

Correspondence to Bharat Singh.

Ethics declarations

Conflicts of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent to publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, B., Patel, S., Vijayvargiya, A. et al. Data-driven gait model for bipedal locomotion over continuous changing speeds and inclines. Auton Robot 47, 753–769 (2023). https://doi.org/10.1007/s10514-023-10108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-023-10108-6

Keywords

Navigation