Skip to main content
Log in

Grid Support for Collaborative Control Room in Fusion Science

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The National Fusion Collaboratory project seeks to enable fusion scientists to exploit Grid capabilities in support of experimental science. To this end we are exploring the concept of a collaborative control room that harnesses Grid and collaborative technologies to provide an environment in which remote experimental devices, codes, and expertise can interact in real time during an experiment. This concept has the potential to make fusion experiments more efficient by enabling researchers to perform more analysis and by engaging more expertise from a geographically distributed team of scientists and resources. As the realities of software development, talent distribution, and budgets increasingly encourage pooling resources and specialization, we see such environments as a necessary tool for future science.

In this paper, we describe an experimental mock-up of a remote interaction with the DIII-D control room. The collaborative control room was demonstrated at SC03 and later reviewed at an international ITER Grid Workshop. We describe how the combined effect of various technologies—collaborative, visualization, and Grid—can be used effectively in experimental science. Specifically, we describe the Access Grid, experimental data presentation tools, and agreement-based resource management and workflow systems enabling time-bounded end-to-end application execution. We also report on FusionGrid services whose use during the fusion experimental cycle became possible for the first time thanks to this technology, and we discuss its potential use in future fusion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tuecke and M. Xu, Web services agreement specification (WS-Agreement) Draft 20, https://forge.gridforum.org/projects/graap-wg/ 2004.

  2. L. Childers, T. Disz, M. Hereld, R. Hudson, I. Judson, R. Olson, M.E. Papka, J. Paris and R. Stevens, Activespaces on the grid: the construction of advanced visualization and interaction environments, in: Simulation and Visualization on the Grid: lecture notes in computational science and engineering 13, eds. M. Griebel, et al. Berlin 2000) pp. 64–80.

  3. K. Czajkowski, I. Foster, C. Kesselman, V. Sander and S. Tuecke, SNAP: A protocol for negotiating service level agreements and coordinating resource management in distributed systems, 8th Workshop on Job Scheduling Strategies for Parallel Processing (July 2002).

  4. E. Feibush, ElVis. http://www.pppl.gov/~efeibush/elvis2003

  5. S.M. Flanagan, J.R. Burruss, C. Ludescher, D. McCune, Q. Peng, L. Randerson and D.P. Schissel, A general purpose data analysis monitoring system with case studies from the national fusion grid and the diii-d mdsplus between pulse analysis system, Fusion Engineering and Design 71(1–4) (2004) 263–267.

    Google Scholar 

  6. I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt and A. Roy, A distributed resource management architecture that supports advance reservations and co-allocation, in: Proc. International Workshop on Quality of Service (1999).

  7. I. Foster, C. Kesselman, J. Nick and S. Tuecke, The physiology of the grid: An open grid services architecture for distributed systems integration, Open Grid Service Infrastructure WG, Global Grid Forum 2002.

  8. I. Foster, C. Kesselman and S. Tuecke, The anatomy of the grid: Enabling scalable virtual organizations, International Journal of High Performance Computing Applications 15(3) (2001) 200–222.

    Article  Google Scholar 

  9. T. Fredian and J. Stillerman, MDSplus remote collaboration support—internet and the world wide web, Fusion Engineering and Design 43 (1999) 327–334.

    Article  Google Scholar 

  10. E.J. Friedman-Hill, Users guide for jess, the java expert system shell, http://herzberg.ca.sandia.gov/jess/, 2001.

  11. J.S. Giarrantano, CLIPS User's Guide, http://www.ghg.net/clips/CLIPS.html, 1998.

  12. R.J. Hawryluk, An empirical approach to tokamak transport, in: Phys. Plasmas Close to Thermonuclear Conditions, ed., B. Coppi, et al., CEC, Brussels, Vol. 1 (1980) p. 19.

  13. K. Keahey, T. Araki and P. Lane, Agreement-based interactions for experimental science, in: Europar (2004).

  14. K. Keahey, T. Fredian, Q. Peng, D.P. Schissel, M. Thompson, I. Foster, M. Greenwald and D. McCune, Computational grids in action: The national fusion collaboratory, Future Generation Computing Systems, 18(8) (2002)1005–1015.

    Google Scholar 

  15. L.L Lao, H. St. John, R.D. Stambaugh, A.G. Kellman and W. Pfeiffer, Reconstruction of current profile parameters and plasma shapes in tokamaks, Nucl. Fusion 25 (1985) 1611.

    Google Scholar 

  16. H. Ludwig, A. Keller, A. Dan and R.P. King, A service level agreement language for dynamic electronic services, IBM Research Report RC22316 (W0201-112) (2002).

  17. J.L. Luxon, N.H. Brooks, L.G. Davis, R.K. Fisher, F.J. Helton, M.A. Mahdavi, J. Rawls, R.D. Stambaugh, T.S. Taylor and J.C. Wesley, in: 11th European Conference on Controlled Fusion and Plasma Physics, Aachen, Federal Republic of Germany, European Physical Society (1983).

  18. R. Madduri, C. Hood and W. Allcock, Reliable File Transfer in Grid Environments, (LCN, 2002) pp. 737–738.

  19. K. Nahrstedt, H. Chu and S. Narayan, QoS-aware resource management for distributed multimedia applications, Journal on High-Speed Networking, IOS Press (Dec. 1998).

  20. J. Schachter, Q. Peng and D.P. Schissel, Data Analysis Software Tools for Enhanced Collaboration at the DIII-D National Fusion Facility, Proceedings of the 2nd IAEA Technical Committee Meeting on Control, Data Acquisition, and Remote Participation on Fusion Research, 1999.

  21. D.P. Schissel, Building the U.S. national fusion grid: Results from the national fusion collaboratory project, 4th IAEA Tech. Mtg. on Control, Data Acquisition, and Remote Participation for Fusion Research, July 21–23, 2003 San Diego, California, to be published in Fusion Engineering and Design.

  22. R. Stevens, Access grid: Enabling group oriented collaboration on the grid, in: The Grid: Blueprint for a New Computing Infrastructure, Morgan Kaufman (2003) pp. 191–199.

  23. H. Zhang, K. Keahey and B. Allcock, Providing Data Transfer with QoS as Agreement-Based Service, submitted to IEEE International Conference on Services Computing (SCC 2004) 2004.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keahey, K., Papka, M.E., Peng, Q. et al. Grid Support for Collaborative Control Room in Fusion Science. Cluster Comput 8, 305–311 (2005). https://doi.org/10.1007/s10586-005-4097-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-005-4097-z

Keywords

Navigation