Skip to main content
Log in

Performance analysis of ALOHA and p-persistent ALOHA for multi-hop underwater acoustic sensor networks

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

The extreme conditions under which multi-hop underwater acoustic sensor networks (UASNs) operate constrain the performance of medium access control (MAC) protocols. The MAC protocol employed significantly impacts the operation of the network supported, and such impacts must be carefully considered when developing protocols for networks constrained by both bandwidth and propagation delay.

Time-based coordination, such as TDMA, have limited applicability due to the dynamic nature of the water channel used to propagate the sound signals, as well as the significant effect of relatively small changes in propagation distance on the propagation time. These effects cause inaccurate time synchronization and therefore make time-based access protocols less viable. The large propagation delays also diminish the effectiveness of carrier sense protocols as they do not predict with any certainty the status of the intended recipients at the point when the traffic would arrive. Thus, CSMA protocols do not perform well in UASNs, either.

Reservation-based protocols have seldom been successful in commercial products over the past 50 years due to many drawbacks, such as limited scalability, relatively low robustness, etc. In particular, the impact of propagation delays in UASNs and other such constrained networks obfuscate the operation of the reservation protocols and diminish, if not completely negate, the benefit of reservations. The efficacy of the well-known RTS-CTS scheme, as a reservation-based enhancement to the CSMA protocol, is also adversely impacted by long propagation delays.

An alternative to these MAC protocols is the much less complex ALOHA protocol, or one of its variants. However, the performance of such protocols within the context of multi-hop networks is not well studied. In this paper we identify the challenges of modeling contention-based MAC protocols and present models for analyzing ALOHA and p-persistent ALOHA variants for a simple string topology. As expected, an application of the model suggests that ALOHA variants are very sensitive to traffic loads. Indeed, when the traffic load is small, utilization becomes insensible to p values. A key finding, though, is the significance of the network size on the protocols’ performance, in terms of successful delivery of traffic from outlying nodes, indicating that such protocols are only appropriate for very small networks, as measured by hop count.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kleinrock, L., Tobagi, F.A.: Packet switching in radio channels: part I Carrier sense multiple-access modes and their throughput-delay characteristics. IEEE Trans. Commun. 23(12), 1400–1416 (1975)

    Article  MATH  Google Scholar 

  2. Xie, G.G., Gibson, J.: A networking protocol for underwater acoustic networks. Technical Report TR-CS-00-02, Department of Computer Science, Naval Postgraduate School, December 2000

  3. Abramson, N.: The ALOHA system—another alternative for computer communications. In: Fall Joint Computer Conference, AFIPS Conference Proceedings, vol. 37, pp. 281–285 (1970)

  4. Xie, G.G., Gibson, J., Diaz-Gonzalez, L.: Incorporating realistic acoustic propagation models in simulation of underwater acoustic networks: a statistical approach. In: Proc. MTS/IEEE Oceans Conference, Boston, September 2006

  5. Xie, P., Cui, J.: Exploring random access and handshaking in large scale underwater wireless acoustic sensor networks. In: Proc. MTS/IEEE Oceans Conference, Boston, September 2006

  6. Akyildiz, I.F., Pompili, D., Melodia, T.: Underwater acoustic sensor networks: research challenges. Ad Hoc Netw. J. (2005)

  7. Hu, F., Tilghman, P., Malkawi, Y., Xiao, Y.: A prototype underwater acoustic sensor network platform with topology-aware MAC scheme. Int. J. Sens. Netw. 2(5/6), 386–398 (2007)

    Article  Google Scholar 

  8. Hu, F., Malkawi, Y., Kumar, S., Xiao, Y.: Vertical and horizontal synchronization services with outlier detection in underwater sensor networks. Wirel. Commun. Mob. Comput. (WCMC) 8(9), 1165–1181 (2008)

    Article  Google Scholar 

  9. Benson, B., Chang, G., Manov, D., Graham, B., Kastner, R.: Design of a low cost acoustic modem for moored oceanographic applications. In: Proc. WUWNet’06 (2006)

  10. Naor, Z., Levy, H.: A centralized dynamic access protocol for next generation wireless networks. In: Proc. IEEE INFOCOM 2001, pp. 767–775 (2001)

  11. Stallings, W.: Data and Computer Communications, 6th ed. Prentice Hall, New York (2000). 521 p.

    Google Scholar 

  12. Gibson, J., Xie, G.G., Xiao, Y.: Performance limits of fair-access in sensor networks with linear and selected grid topologies. In: Proc. of IEEE GLOBECOM (2007)

  13. Li, J., Blake, C., De Couto, D.S.J., Lee, H.I., Morris, R.: Capacity of ad hoc wireless networks. In: Proc. ACME MobiCom’01, pp. 61–69 (2001)

  14. Olsson, D.M., Nelson, L.S.: The Nelder-Mead simplex procedure for function minimization. Technometrics 17(1), 45–51 (1975)

    Article  MATH  Google Scholar 

  15. Gupta, N., Kumar, P.R.: A performance analysis of the 802.11 wireless LAN medium access control. Commun. Inf. Syst. 3(4), 279–304 (2004)

    MathSciNet  Google Scholar 

  16. Bisnik, N., Abouzeid, A.: Queuing network models for delay analysis of multihop wireless ad hoc networks. In: Proc. Int. Wireless Commun. and Mobile Computing Conf. (IWCMC), Vancouver, BC, July 2006

  17. Molins, M., Stojanovic, M.: Slotted FAMA: a MAC protocol for underwater acoustic networks. In: Proc. MTS/IEEE Oceans Asia Conference, Singapore, May 2006

  18. Rodoplu, V., Park, M.: An energy-efficient MAC protocol for underwater wireless acoustic networks. In: Proc. MTS/IEEE Oceans Conference, September 2005

  19. Syed, A.A., Ye, W., Heidemann, J.: Medium access for underwater acoustic sensor networks. Technical Report, USC/Information Sciences Institute, October 2006

  20. Gibson, J.H., Xie, G.G., Xiao, Y., Chen, H.: Analyzing the performance of multi-hop underwater acoustic sensor networks. In: Proc. IEEE/OES Oceans 07 Aberdeen Conference (2007)

  21. Zhang, Y., Xiao, Y., Chen, M., Bahri, P., Kamboj, M.: Medium access control layer for underwater sensor networks. In: Underwater Acoustic Sensor Networks. Auerbach Publications, Taylor & Francis, London (2009). ISBN-13:978-1420067118, ISBN-10:1420067117

    Google Scholar 

  22. Huang, Y., Liang, W., Yu, H.-B., Xiao, Y.: Target tracking based on a distributed particle filter in underwater sensor networks. Wirel. Commun. Mob. Comput. (WCMC) 8(8), 1011–1022 (2008). Special issue on Underwater Sensor Networks: Architectures and Protocols

    Article  Google Scholar 

  23. Liu, L., Xiao, Y., Zhang, J.: Effect of node movement to time synchronization of underwater wireless sensor network. In: Proceedings of IEEE 2009 International Conference on Communications (IEEE ICC 2009) (2009)

  24. Liu, R., Rogers, G., Zhou, S., Zic, J.: Topology control with hexagonal tessellation. Int. J. Sens. Netw. 2(1/2), 91–98 (2006)

    Article  Google Scholar 

  25. Huang, H., Hartman, J.H., Hurst, T.N.: Efficient and robust query processing for mobile wireless sensor networks. Int. J. Sens. Netw. 2(1/2), 99–107 (2006)

    Article  Google Scholar 

  26. Youssef, A., Younis, M.F., Youssef, M., Agrawala, A.: Establishing overlapped multihop clusters in wireless sensor networks. Int. J. Sens. Netw. 2(1/2), 108–117 (2006)

    Article  Google Scholar 

  27. Snoussi, H., Richard, C.: Distributed Bayesian fault diagnosis of jump Markov systems in wireless sensor networks. Int. J. Sens. Netw. 2(1/2), 118–127 (2006)

    Article  Google Scholar 

  28. Fantacci, R., Tarch, D.: Efficient scheduling techniques for high data-rate wireless personal area networks. Int. J. Sens. Netw. 2(1/2), 128–134 (2006)

    Article  Google Scholar 

  29. Hassanein, H., Yang, Y., Mawji, A.: A new approach to service discovery in wireless mobile ad hoc networks. Int. J. Sens. Netw. 2(1/2), 135–145 (2006)

    Article  Google Scholar 

  30. Cheng, X., Li, Y., Li, J.: Editorial. Int. J. Sens. Netw. 2(3/4), 147–148 (2007)

    Google Scholar 

  31. Jadliwala, M., Duan, Q., Xu, J., Upadhyaya, S.: On extracting consistent graphs in wireless sensor networks. Int. J. Sens. Netw. 2(3/4), 149–162 (2007)

    Article  Google Scholar 

  32. Tezcan, N., Wang, W.: ART: an asymmetric and reliable transport mechanism for wireless sensor networks. Int. J. Sens. Netw. 2(3/4), 188–200 (2007)

    Article  Google Scholar 

  33. Wang, F., Xu, K., Thai, M.T., Du, D.-Z.: Fault tolerant topology control for one-to-all communications in symmetric wireless networks. Int. J. Sens. Netw. 2(3/4), 163–168 (2007)

    Article  Google Scholar 

  34. Chen, Y., Wang, Z., Liang, J.: Optimal dynamic actuator location in distributed feedback control of a diffusion process. Int. J. Sens. Netw. 2(3/4), 169–178 (2007)

    Article  MATH  Google Scholar 

  35. Gnanapandithan, N., Natarajan, B.: Decentralised sensor network performance with correlated observations. Int. J. Sens. Netw. 2(3/4), 179–187 (2007)

    Article  Google Scholar 

  36. Raghavan, U.N., Kumara, S.R.T.: Decentralised topology control algorithms for connectivity of distributed wireless sensor networks. Int. J. Sens. Netw. 2(3/4), 201–210 (2007)

    Article  Google Scholar 

  37. Jang, I.S., Wang, X., Krishnamurthy, V.: Discrete stochastic approximation algorithms for design of optimal sensor fusion rules. Int. J. Sens. Netw. 2(3/4), 211–217 (2007)

    Article  Google Scholar 

  38. Li, J.H., Yu, M.: Sensor coverage in wireless ad hoc sensor networks. Int. J. Sens. Netw. 2(3/4), 218–229 (2007)

    Article  Google Scholar 

  39. Zhao, M., Chen, Z., Ge, Z.: QS-Sift: QoS and spatial correlation-based medium access control in wireless sensor networks. Int. J. Sens. Netw. 2(3/4), 228–234 (2007)

    Article  Google Scholar 

  40. Shen, S., O’Hare, G.M.P.: Wireless sensor networks, an energy-aware and utility-based BDI agent approach. Int. J. Sens. Netw. 2(3/4), 235–245 (2007)

    Article  Google Scholar 

  41. Liang, Q., Wang, L., Ren, Q.: Fault-tolerant and energy efficient cross-layer design for wireless sensor networks. Int. J. Sens. Netw. 2(3/4), 248–257 (2007)

    Article  Google Scholar 

  42. Watfa, M.K., Commuri, S.: A framework for assessing residual energy in wireless sensor network. Int. J. Sens. Netw. 2(3/4), 256–272 (2007)

    Article  Google Scholar 

  43. Bhattacharyya, M., Kumar, A., Bayoumi, M.: Boundary coverage and coverage boundary problems in wireless sensor. Int. J. Sens. Netw. 2(3/4), 273–283 (2007)

    Article  Google Scholar 

  44. Chen, H.-H., Guizani, M.: Editorial. Int. J. Sens. Netw. 2(5/6), 287–288 (2007)

    Google Scholar 

  45. Du, X., Zhang, M., Nygard, K.E., Guizani, S., Chen, H.-H.: Self-healing sensor networks with distributed decision making. Int. J. Sens. Netw. 2(5/6), 289–298 (2007)

    Article  Google Scholar 

  46. Chiti, F., Ciabatti, M., Collodi, G., Fantacci, R., Manes, A.: Design and application of enhanced communication protocols for wireless sensor networks operating in environmental monitoring. Int. J. Sens. Netw. 2(5/6), 299–310 (2007)

    Article  Google Scholar 

  47. AboElFotoh, H.M.F., Elmallah, E.S., Hassanein, H.S.: A flow-based reliability measure for wireless sensor networks. Int. J. Sens. Netw. 2(5/6), 311–320 (2007)

    Article  Google Scholar 

  48. Wu, K.-D., Liao, W.: On constructing low interference topology in multihop wireless sensor networks. Int. J. Sens. Netw. 2(5/6), 321–330 (2007)

    Article  Google Scholar 

  49. Youssef, W.A., Younis, M.F., Akkaya, K.: Improving gateway safety in wireless sensor networks using cognitive techniques. Int. J. Sens. Netw. 2(5/6), 331–340 (2007)

    Article  Google Scholar 

  50. Ansari, J., Riihijarvi, J., Mahonen, P., Haapola, J.: Implementation and performance evaluation of nanoMAC: a low-power MAC solution for high density wireless sensor networks. Int. J. Sens. Netw. 2(5/6), 341–349 (2007)

    Article  Google Scholar 

  51. Ci, S.: Mining and visualising wireless sensor network data. Int. J. Sens. Netw. 2(5/6), 350–357 (2007)

    Article  Google Scholar 

  52. Janies, J., Huang, C.-T., Johnson, N.L., Richardson, T.: SUMP: a secure unicast messaging protocol for wireless ad hoc sensor networks. Int. J. Sens. Netw. 2(5/6), 358–367 (2007)

    Article  Google Scholar 

  53. Yang, Y., Wu, H., Chen, H.-H.: SHORT: shortest hop routing tree for wireless sensor networks. Int. J. Sens. Netw. 2(5/6), 368–374 (2007)

    Article  Google Scholar 

  54. Cam, H.: Multiple-input turbo code for secure data aggregation and source-channel coding in wireless sensor networks. Int. J. Sens. Netw. 2(5/6), 375–385 (2007)

    Article  Google Scholar 

  55. Liu, C., Scott, T., Wu, K., Hoffman, D.: Range-free sensor localisation with ring overlapping based on comparison of received signal strength indicator. Int. J. Sens. Netw. 2(5/6), 399–413 (2007)

    Article  Google Scholar 

  56. Nguyen, T., Nguyen, D., Liu, H., Tran, D.A.: Stochastic binary sensor networks for noisy environments. Int. J. Sens. Netw. 2(5/6), 414–427 (2007)

    Article  Google Scholar 

  57. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)

    Article  Google Scholar 

  58. Xiao, Y.: IEEE 802.11 Performance enhancement via concatenation and piggyback mechanisms. IEEE Trans. Wirel. Commun. 4(5), 2182–2192 (2005)

    Article  Google Scholar 

  59. Xiao, Y.: Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. Wirel. Commun. 4(4), 1506–1515 (2005)

    Article  Google Scholar 

  60. Bianchi, G., Tinnirello, I., Xiao, Y.: Refinements on IEEE 802.11 DCF modeling approaches. IEEE Trans. Veh. Technol. (2009, accepted)

  61. Ghaboosi, K., Khalaj, B., Xiao, Y., Latva-aho, M.: Modeling IEEE 802.11 DCF using parallel space time Markov chain. IEEE Trans. Veh. Technol. 57(4), 2404–2413 (2008)

    Article  Google Scholar 

  62. Ghaboosi, K., Latva-aho, M., Xiao, Y., Khalaj, B.: Modeling IEEE 802.11 DCF: non-saturated multi-hop ad hoc networks. IEEE Trans. Veh. Technol. (2009, to appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, Y., Zhang, Y., Gibson, J.H. et al. Performance analysis of ALOHA and p-persistent ALOHA for multi-hop underwater acoustic sensor networks. Cluster Comput 14, 65–80 (2011). https://doi.org/10.1007/s10586-009-0093-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-009-0093-z

Keywords

Navigation