Skip to main content
Log in

Mvmotion: a metadata based virtual machine migration in cloud

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

As one of the most important features of virtualization, virtual machine (VM) migration provides great benefits for load balancing, resources-saving, fault tolerance in modern cloud data centers. Considering the network traffic caused by transferring data during VM migration imposes a huge pressure on network bandwidth of cloud data centers, and by analyzing the characteristic of the transferred data, we found that the redundant data, which is produced between two physical hosts by hosting virtual machines cloned from same VM template, can be reduced to relieve the network traffic pressure. This paper presents a Metadata based VM migration approach (Mvmotion) to reduce the amount of transferred data during migration by utilizing memory de-redundant technique between two physical hosts. Mvmotion utilizes the hash based fingerprints to generate Metadata of memory, which is used to identify redundant memory of VMs between two hosts. Based on the Metadata, the transfer of redundant memory data during migration can be eliminated. Experiment demonstrates that, compare to Xen’s default migration approach, Mvmotion can reduce the total transferred data by 29–97 %, and decreases the migration time by 16–53 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt, I., Warfield, A.: Xen and the art of virtualization. Oper. Syst. Rev. 37 (5), 164–177 (2003)

    Article  Google Scholar 

  2. Bugnion, E., Devine, S., Rosenblum, M.: Disco: running commodity operating systems on scalable multiprocessors. In: ACM SIGOPS Operating Systems Review, vol. 31, pp. 143–156. ACM, New York (1997)

    Google Scholar 

  3. Clark, C., Fraser, K., Hand, S., Hansen, J., Jul, E., Limpach, C., Pratt, I., Warfield, A.: Live migration of virtual machines. In: Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation, vol. 2, pp. 273–286. USENIX Association, Berkeley (2005)

    Google Scholar 

  4. Fox, A., Griffith, R., et al.: Above the clouds: a berkeley view of cloud computing. Dept. Electrical Eng. and Comput. Sciences, University of California, Berkeley, Rep. UCB/EECS 28 (2009)

  5. Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A., Varghese, G., Voelker, G., Vahdat, A.: Difference engine: Harnessing memory redundancy in virtual machines. Commun. ACM 53 (10), 85–93 (2010)

    Article  Google Scholar 

  6. Hacking, S., Hudzia, B.: Improving the live migration process of large enterprise applications. In: Proceedings of the 3rd International Workshop on Virtualization Technologies in Distributed Computing, pp. 51–58. ACM, New York (2009)

    Chapter  Google Scholar 

  7. Hines, M., Gopalan, K.: Post-copy based live virtual machine migration using adaptive pre-paging and dynamic self-ballooning. In: Proceedings of the 2009 ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, pp. 51–60. ACM, New York (2009)

    Chapter  Google Scholar 

  8. Hsieh, P.: Hash functions. Available online: http://www.azillionmonkeys.com/qed/hash.html (current 4 May 2012)

  9. Jin, H., Deng, L., Wu, S., Shi, X., Pan, X.: Live virtual machine migration with adaptive, memory compression. In: IEEE International Conference on Cluster Computing and Workshops. CLUSTER’09, pp. 1–10. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  10. Kivity, A., Kamay, Y., Laor, D., Lublin, U., Liguori, A.: kvm: the linux virtual machine monitor. In: Proceedings of the Linux Symposium, vol. 1, pp. 225–230 (2007)

    Google Scholar 

  11. Kloster, J., Kristensen, J., Mejlholm, A.: Efficient memory sharing in the xen virtual machine monitor (2006)

  12. Kloster, J., Kristensen, J., Mejlholm, A.: On the feasibility of memory sharing: Content-based page sharing in the xen virtual machine monitor. Master’s thesis, University of Aalborg (2006)

  13. Lagar-Cavilla, H., Whitney, J., Scannell, A., Patchin, P., Rumble, S., De Lara, E., Brudno, M., Satyanarayanan, M.: Snowflock: rapid virtual machine cloning for cloud computing. In: Proceedings of the 4th ACM European conference on Computer systems, pp. 1–12. ACM, New York (2009)

    Google Scholar 

  14. Liao, X., Jin, H., Liu, H.: Towards a green cluster through dynamic remapping of virtual machines. Future Gener. Comput. Syst. 28 (2), 469–477 (2012)

    Article  Google Scholar 

  15. Liu, H., Jin, H., Liao, X., Hu, L., Yu, C.: Live migration of virtual machine based on full system trace and replay. In: Proceedings of the 18th ACM International Symposium on High Performance Distributed Computing, pp. 101–110. ACM, New York (2009)

    Chapter  Google Scholar 

  16. Miłós, G., Murray, D., Hand, S., Fetterman, M.: Satori: enlightened page sharing. In: Proceedings of the 2009 Conference on USENIX Annual Technical Conference, p. 1. USENIX Association, Berkeley (2009)

    Google Scholar 

  17. Nathuji, R., Schwan, K.: Virtualpower: coordinated power management in virtualized enterprise systems. In: ACM SIGOPS Operating Systems Review, vol. 41, pp. 265–278. ACM, New York (2007)

    Google Scholar 

  18. Nelson, M., Lim, B., Hutchins, G., et al.: Fast transparent migration for virtual machines. In: Proceedings of the Annual Conference on USENIX Annual Technical Conference, p. 25 (2005)

    Google Scholar 

  19. Osman, S., Subhraveti, D., Su, G., Nieh, J.: The design and implementation of zap: a system for migrating computing environments. Oper. Syst. Rev. 36 (SI), 361–376 (2002)

    Article  Google Scholar 

  20. Padala, P., Shin, K., Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Salem, K.: Adaptive control of virtualized resources in utility computing environments. Oper. Syst. Rev. 41 (3), 289–302 (2007)

    Article  Google Scholar 

  21. Patchin, P., Lagar-Cavilla, H., de Lara, E., Brudno, M.: Adding the easy button to the cloud with snowflock and mpi. In: Proceedings of the 3rd ACM Workshop on System-Level Virtualization for High Performance Computing, pp. 1–8. ACM, New York (2009)

    Chapter  Google Scholar 

  22. Sapuntzakis, C., Chandra, R., Pfaff, B., Chow, J., Lam, M., Rosenblum, M.: Optimizing the migration of virtual computers. Oper. Syst. Rev. 36 (SI), 377–390 (2002)

    Article  Google Scholar 

  23. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing i/o devices on vmware workstation’s hosted virtual machine monitor. In: USENIX Annual Technical Conference, pp. 1–14 (2001)

    Google Scholar 

  24. Vogels, W.: Beyond server consolidation. ACM Queue 6 (1), 20–26 (2008)

    Article  Google Scholar 

  25. Waldspurger, C.: Memory resource management in vmware esx server. Oper. Syst. Rev. 36 (SI), 181–194 (2002)

    Article  Google Scholar 

  26. Wood, T.: Improving data center resource management, deployment, and availability with virtualization. Ph.D. Thesis, University of Massachusetts Amherst (2011)

  27. Wu, J., Shih, S., Liu, P., Chung, Y.: Optimizing server placement in distributed systems in the presence of competition. J. Parallel Distrib. Comput. 71 (1), 62–76 (2011)

    Article  MATH  Google Scholar 

  28. Zhang, X., Huo, Z., Ma, J., Meng, D.: Exploiting data deduplication to accelerate live virtual machine migration. In: IEEE International Conference on Cluster Computing (CLUSTER 2010), pp. 88–96. IEEE Press, New York (2010)

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (60973008 and 61232009); the State Key Laboratory of Software Development Environment (SKLSDE-2012ZX-07); the Doctoral Fund of Ministry of Education of China (20101102110018); the Hi-Tech Research and Development Program (863) of China (2011AA01A205); the Beijing Natural Science Foundation under Grant No. 4122042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Xiao, L., Zhu, M. et al. Mvmotion: a metadata based virtual machine migration in cloud. Cluster Comput 17, 441–452 (2014). https://doi.org/10.1007/s10586-013-0245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-013-0245-z

Keywords

Navigation