Skip to main content

Towards autonomic performance management of large scale data centers using interaction balance principle

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this paper, an autonomic performance management approach is introduced that can be applied to a general class of web services deployed in large scale distributed environment. The proposed approach utilizes traditional large scale control-based algorithms by using interaction balance approach in web service environment for managing the response time and the system level power consumption. This approach is developed in a generic fashion that makes it suitable for web service deployments, where web service performance can be adjusted by using a finite set of control inputs. This approach maintains the service level agreements, maximizes the revenue, and minimizes the infrastructure operating cost. Additionally, the proposed approach is fault-tolerant with respect to the failures of the computing nodes inside the distributed deployment. Moreover, the computational overhead of the proposed approach can also be managed by using appropriate value of configuration parameters during its deployment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Algorithm 2
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Abdelwahed, S., Hassan, M., Sultan, M.: Parallel asynchronous algorithms for optimal control of large-scale dynamic systems. Optim. Control Appl. Methods 18 (1997)

  2. Abdelwahed, S., Bai, J., Su, R., Kandasamy, N.: On the application of predictive control techniques for adaptive performance management of computing systems. IEEE Trans. Netw. Serv. Manag. 6(4), 212–225 (2009). doi:10.1109/TNSM.2009.04.090402

    Article  Google Scholar 

  3. Arlitt, M., Jin, T.: Workload characterization of the 1998 world cup web site. Technical Report HPL-99-35R1, Hewlett-Packard Labs (1999)

  4. DeLurgio, S.A.: Forecasting Principles and Applications. McGraw-Hill, New York (1998)

    Google Scholar 

  5. Dunbar, W.B., Murray, R.M.: Distributed receding horizon control for multi-vehicle formation stabilization. Automatica 42(4), 549–558 (2006). doi:10.1016/j.automatica.2005.12.008, http://www.sciencedirect.com/science/article/pii/S0005109806000136

    Article  MATH  MathSciNet  Google Scholar 

  6. Edwin, G., Cox, M.T.: In: Comas: Coordination in Multiagent Systems (2001)

    Google Scholar 

  7. Hou, Z.G.: A hierarchical optimization neural network for large-scale dynamic systems. Automatica 37(12), 1931–1940 (2001). doi:10.1016/S0005-1098(01)00158-3, http://www.sciencedirect.com/science/article/pii/S0005109801001583.

    Article  MATH  MathSciNet  Google Scholar 

  8. Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. ASME Ser. D, J. Basic. Eng. 82, 35–45 (1960). http://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf

    Article  Google Scholar 

  9. Kandasamy, N., Abdelwahed, S., Khandekar, M.: A hierarchical optimization framework for autonomic performance management of distributed computing systems. In: Proc. 26th IEEE Int’l Conf. Distributed Computing Systems (ICDCS) (2006)

    Google Scholar 

  10. Keviczky, T., Borrelli, F., Balas, G.: Hierarchical design of decentralized receding horizon controllers for decoupled systems. In: 43rd IEEE Conference on Decision and Control, 2004, CDC, vol. 2, pp. 1592–1597 (2004). doi:10.1109/CDC.2004.1430271

    Google Scholar 

  11. Keviczky, T., Borrelli, F., Fregene, K., Godbole, D., Balas, G.: Decentralized receding horizon control and coordination of autonomous vehicle formations. IEEE Trans. Control Syst. Technol. 16(1), 19–33 (2008). doi:10.1109/TCST.2007.903066

    Article  Google Scholar 

  12. Kusic, D., Kandasamy, N., Jiang, G.: Approximation modeling for the online performance management of distributed computing systems. In: ICAC’07: Proceedings of the Fourth International Conference on Autonomic Computing, p. 23 (2007). doi:10.1109/ICAC.2007.8

    Google Scholar 

  13. Mehrotra, R., Dubey, A., Abdelwahed, S., Tantawi, A.: A Power-Aware Modeling and Autonomic Management Framework for Distributed Computing Systems. CRC Press, Boca Raton (2011)

    Google Scholar 

  14. Mehrotra, R., Dubey, A., Abdelwahed, S., Rowland, K.W.: Rfdmon: a real-time and fault-tolerant distributed system monitoring approach. In: The Eighth International Conference on Autonomic and Autonomous Systems. St. Maarten, Netherlands Antilles (2012)

    Google Scholar 

  15. Sadati, N.: A novel approach to coordination of large-scale systems; part I interaction prediction principle. In: IEEE International Conference on Industrial Technology, 2005, ICIT, pp. 641–647 (2005). doi:10.1109/ICIT.2005.1600716

    Google Scholar 

  16. Sadati, N.: A novel approach to coordination of large-scale systems; part II interaction balance principle. In: IEEE International Conference on Industrial Technology, 2005, ICIT, pp. 648–654 (2005). doi:10.1109/ICIT.2005.1600717

    Google Scholar 

  17. Sadati, N., Dumont, G.A.: A reinforcement learning approach to intelligent goal coordination of two-level large-scale control systems. In: Mellouk, P.A. (ed.) Advances in Reinforce- ment Learning. http://www.intechopen.com/books/advances-in-reinforcement-learning/a-reinforcement-learning-approach-to-intelligent-goal-coordination-of-two-level-large-scale-control

  18. Titli, M.G.S.A.: Systems: Decomposition, Optimisation, and Control. Pergamon, Elmsford (1978)

    MATH  Google Scholar 

  19. Wang, M., Kandasamy, N., Guez, A., Kam, M.: Adaptive performance control of computing systems via distributed cooperative control: application to power management in computing clusters. In: IEEE International Conference on Autonomic Computing, 2006, ICAC, pp. 165–174 (2006). doi:10.1109/ICAC.2006.1662395

    Google Scholar 

  20. Wang, C., Ong, C.J., Sim, M.: Distributed model predictive control of dynamically decoupled linear systems with coupled cost. In: Proceedings of the 48th IEEE Conference on Decision and Control, 2009 Held Jointly with the 2009 28th Chinese Control Conference, CDC/CCC, 2009, pp. 5420–5425 (2009). doi:10.1109/CDC.2009.5400521

    Google Scholar 

  21. Xu, J., Zhao, M., Fortes, J.A.: Cooperative autonomic management in dynamic distributed systems. In: Proceedings of the 11th International Symposium on Stabilization, Safety, and Security of Distributed Systems, SSS’09, pp. 756–770. Springer, Berlin (2009). doi:10.1007/978-3-642-05118-0_52

    Chapter  Google Scholar 

Download references

Acknowledgements

This research was made possible by NPRP grant # NPRP 09-778-2299 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Mehrotra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehrotra, R., Abdelwahed, S. Towards autonomic performance management of large scale data centers using interaction balance principle. Cluster Comput 17, 979–999 (2014). https://doi.org/10.1007/s10586-013-0333-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-013-0333-0

Keywords