Abstract
Grid computing uses distributed interconnected computers and resources collectively to achieve higher performance computing and resource sharing. Task scheduling is one of the core steps to efficiently exploit the capabilities of Grid environment. Recently, heuristic algorithms have been successfully applied to solve task scheduling on computational Grids. In this paper, Gravitational Search Algorithm (GSA), as one of the latest population-based metaheuristic algorithms, is used for task scheduling on computational Grids. The proposed method employs GSA to find the best solution with the minimum makespan and flowtime. We evaluate this approach with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) method. The results demonstrate that the benefit of the GSA is its speed of convergence and the capability to obtain feasible schedules.










Similar content being viewed by others
References
Abraham, A., Liu, H., Zhang, W., Chang, T.-G.: Scheduling jobs on computational grids using fuzzy particle swarm algorithm. In: Knowledge-Based Intelligent Information and Engineering Systems, pp. 500–507. Springer, Berlin (2006)
Akbari Torkestani, J.: A new approach to the job scheduling problem in computational grids. Clust. Comput. 15(3), 201–210 (2012)
Ali, S., Siegel, H.J., Maheswaran, M., Hensgen, D., Ali, S.: Representing task and machine heterogeneities for heterogeneous computing systems. Tamkang J. Sci. Eng. 3(3), 195–208 (2000)
Ali, S., Braun, T.D., Siegel, H.J., Maciejewski, A.A., Beck, N., Bölöni, L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., et al.: Characterizing resource allocation heuristics for heterogeneous computing systems. Adv. Comput. 63, 91–128 (2005)
Bandieramonte, M., Di Stefano, A., Morana, G.: An ACO inspired strategy to improve jobs scheduling in a grid environment. In: Algorithms and Architectures for Parallel Processing, pp. 30–41. Springer, Berlin (2008)
Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I., Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., et al.: A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)
Carretero, J., Xhafa, F.: Use of genetic algorithms for scheduling jobs in large scale grid applications. Technol. Econ. Dev. Econ. 12(1), 11–17 (2006)
Carretero, J., Xhafa, F., Abraham, A.: Genetic algorithm based schedulers for grid computing systems. Int. J. Innov. Comput. Inf. Control 3(6), 1–19 (2007)
Chang, R.-S., Chang, J.-S., Lin, P.-S.: An ant algorithm for balanced job scheduling in grids. Future Gener. Comput. Syst. 25(1), 20–27 (2009)
Chen, W.-N., Zhang, J.: An ant colony optimization approach to a grid workflow scheduling problem with various QoS requirements. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 39(1), 29–43 (2009)
de Mello, R.F., Andrade Filho, J.A., Senger, L.J., Yang, L.T.: Grid job scheduling using route with genetic algorithm support. Telecommun. Syst. 38(3–4), 147–160 (2008)
Di Martino, V., Mililotti, M.: Scheduling in a grid computing environment using genetic algorithms. In: IPDPS (2002)
Di Martino, V., Mililotti, M.: Sub optimal scheduling in a grid using genetic algorithms. Parallel Comput. 30(5), 553–565 (2004)
Dong, F., Akl, S.G.: Scheduling algorithms for grid computing: state of the art and open problems. School of Computing, Queens University, Kingston, Ontario (2006)
Dorigo, M.: Optimization, learning and natural algorithms. Ph.D. thesis, Politecnico di Milano, Italy (1992)
Gao, Y., Rong, H., Huang, J.Z.: Adaptive grid job scheduling with genetic algorithms. Future Gener. Comput. Syst. 21(1), 151–161 (2005)
Glover, F.: Future paths for integer programming and links to artificial intelligence. Comput. Oper. Res. 13(5), 533–549 (1986)
Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning (1989)
Kant, A., Sharma, A., Agarwal, S., Chandra, S.: An ACO approach to job scheduling in grid environment. In: Swarm, Evolutionary, and Memetic Computing, pp. 286–295. Springer, Berlin (2010)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, 1995, vol. 4, pp. 1942–1948. IEEE Press, New York (1995)
Kirkpatrick, S., Gelatt, D. Jr., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Liu, D., Cao, Y.: A chaotic genetic algorithm for fuzzy grid job scheduling. In: 2006 International Conference on Computational Intelligence and Security, vol. 1, pp. 320–323. IEEE Press, New York (2006)
Liu, H., Abraham, A., Hassanien, A.E.: Scheduling jobs on computational grids using a fuzzy particle swarm optimization algorithm. Future Gener. Comput. Syst. 26(8), 1336–1343 (2010)
Lorpunmanee, S., Noor Sap, M., Hanan Abdullah, A., Chompoo-inwai, C.: An ant colony optimization for dynamic job scheduling in grid environment. Int. J. Comput. Inf. Sci. Eng. 1(4), 207–214 (2007)
Page, A.J., Naughton, T.J.: Framework for task scheduling in heterogeneous distributed computing using genetic algorithms. Artif. Intell. Rev. 24(3–4), 415–429 (2005)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: BGSA: binary gravitational search algorithm. Nat. Comput. 9(3), 727–745 (2010)
Ritchie, G., Levine, J.: A Hybrid Ant Algorithm for Scheduling Independent Jobs in Heterogeneous Computing Environments (2004)
Siddiqui, M., Fahringer, T.: Grid Resource Management: On-demand Provisioning, Advance Reservation, and Capacity Planning of Grid Resources. Springer, Berlin (2010). LNCS sublibrary. SL 1. Theoretical computer science and general issues. ISBN 9783642115783
Song, S., Hwang, K., Kwok, Y.-K.: Risk-resilient heuristics and genetic algorithms for security-assured grid job scheduling. IEEE Trans. Comput. 55(6), 703–719 (2006)
Steuer, R.E.: Multiple Criteria Optimization: Theory, Computation, and Application. Wiley, New York (1986)
Sudha Sadasivam, G., Viji Rajendran, V.: An efficient approach to task scheduling in computational grids. Int. J. Comput. Sci. Appl. 6(1), 53–69 (2009)
Talbi, E.-G.: A taxonomy of hybrid metaheuristics. J. Heuristics 8(5), 541–564 (2002)
Tao, Q., Chang, H.-y., Yi, Y., Gu, C.-q., Li, W.-j.: A rotary chaotic PSO algorithm for trustworthy scheduling of a grid workflow. Comput. Oper. Res. 38(5), 824–836 (2011)
Wilkinson, B.: Grid Computing: Techniques and Applications. Chapman & Hall/CRC Press/Taylor & Francis, London/Boca Raton/London (2011). ISBN 9781420069549
Xhafa, F., Abraham, A.: Computational models and heuristic methods for grid scheduling problems. Future Gener. Comput. Syst. 26(4), 608–621 (2010)
Xhafa, F., Barolli, L., Durresi, A.: Batch mode scheduling in grid systems. Int. J. Web Grid Serv. 3(1), 19–37 (2007)
Xhafa, F., Carretero, J., Barolli, L., Durresi, A.: Immediate mode scheduling in grid systems. Int. J. Web Grid Serv. 3(2), 219–236 (2007)
Xhafa, F., Duran, B., Abraham, A., Dahal, K.P.: Tuning struggle strategy in genetic algorithms for scheduling in computational grids. In: Computer Information Systems and Industrial Management Applications, pp. 275–280. IEEE Press, New York (2008)
Xhafa, F., Gonzalez, J.A., Dahal, K.P., Abraham, A.: A GA (TS) hybrid algorithm for scheduling in computational grids. In: Hybrid Artificial Intelligence Systems, pp. 285–292. Springer, Berlin (2009)
Xhafa, F., Carretero, J., Dorronsoro, B., Alba, E.: A tabu search algorithm for scheduling independent jobs in computational grids. Comput. Inform. 28(2), 237–250 (2012)
Yan, H., Shen, X.-Q., Li, X., Wu, M.-H.: An improved ant algorithm for job scheduling in grid computing. In: Proceedings of 2005 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2957–2961. IEEE Press, New York (2005)
YarKhan, A., Dongarra, J.J.: Experiments with scheduling using simulated annealing in a grid environment. In: Grid Computing—GRID 2002, pp. 232–242. Springer, Berlin (2002)
Zarrabi, A., Samsudin, K., Wan Adnan, W.A.: Linux support for fast transparent general purpose checkpoint/restart of multithreaded processes in loadable kernel module. J. Grid Comput. 11(2), 187–210 (2013)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zarrabi, A., Samsudin, K. Task scheduling on computational Grids using Gravitational Search Algorithm. Cluster Comput 17, 1001–1011 (2014). https://doi.org/10.1007/s10586-013-0338-8
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-013-0338-8