Abstract
Placement of component service replicas for service-based application (SBA) in cloud environments has become increasingly important. A SBA is usually communication topology-aware, and component service replicas possess stronger data dependency than data replicas; therefore, there are huge amounts of communication between the computer nodes that are used to place component service replicas. Because the conventional methods do not consider the communication topology of component services and the relations between computer nodes, they are not appropriate for placing component service replicas. In this paper, we propose a topological matching-based component service replicas placement method that takes into account not only the topology of SBAs but also the communication performance between different computing nodes. This method first discovers the communication topology of a SBA via multi-scale graph clustering then acquires the topology of computer nodes through spectral clustering. It then places the component service replicas by matching the above two topological structures. Comprehensive experiments are conducted by comparing the performance of our method with those of other methods based on CloudSim simulation software. The results show the effectiveness of our method for improving the performance of SBAs.











Similar content being viewed by others
References
Anderson, D.P.: Boinc: a system for public-resource computing and storage. In: The fifth IEEE/ACM international workshop on grid computing, pp. 4–10 (2004). doi:10.1109/GRID.2004.14
Araujo, F., Boychenko, S., Barbosa, R., et al.: Replica placement to mitigate attacks on clouds. J. Internet Serv. Appl. 5(1), 1–13 (2014). doi:10.1186/s13174-014-0007-z
Boru, D., Kliazovich, D., Granelli, F., et al.: Energy-efficient data replication in cloud computing datacenters. Cluster Comput. 18, 385–402 (2015)
Burger, M., Zelazo, D., Allgower, F.: Hierarchical clustering of dynamical networks using a saddle-point analysis. J. IEEE Trans. Autom. Control 58(1), 113–124 (2013). doi:10.1109/TAC.2012.2206695
Calheiros, R.N., Ranjan, R., Beloglazov, A., et al.: CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)
Chen, N., Xu, Z., Xia, M.: Hierarchical hesitant fuzzy K-means clustering algorithm. J. Appl. Math. 29(1), 1–17 (2014). doi:10.1007/s11766-014-3091-8
Chen, K., Zheng, W.M.: Cloud computing: system instances and current research. J. Softw. 20(5), 1337–1348 (2009). doi:10.3724/SP.J.1001.2009.03493
Ding, C., He, X.: Cluster merging and splitting in hierarchical clustering algorithms. In: The IEEE international conference on data mining, pp. 139–146 (2002). doi:10.1109/ICDM.2002.1183896
Durao, F., Carvalho, J.F.S., Fonseka, A., Garcia, V.C.: A systematic review on cloud computing. J. Supercomput. 68(3), 1321–1346 (2014). doi:10.1007/s11227-014-1089-x
Ghanbari, H., Litoiu, M., Pawluk, P., et al.: Replica placement in cloud through simple stochastic model predictive control. In: The 7th IEEE international conference on cloud computing (CLOUD), pp. 80–87 (2014). doi:10.1109/CLOUD.2014.21
Hu, C., Xu, Z., et al.: Semantic link network based model for organizing multimedia big data. IEEE Trans. Emerg. Top Comput. 2(3), 376–387 (2014)
Hussain, M., Abdulsalam, H.M.: Software quality in the clouds: a cloud-based solution. Cluster Comput. 17(2), 389–402 (2014)
Jung, J.-K., et al.: Improved CloudSim for Simulating QoS-Based Cloud Services. Ubiquitous Information Technologies and Applications, pp. 537–545. Springer, Netherlands (2013). doi: 10.1007/978-94-007-5857-5_58
Kalayci, S., Dasgupta, G., Fong, L.: Distributed and adaptive execution of condor DAGMan workflows. In: SEKE, pp. 587–590 (2010)
Ko, B.J., Rubenstein, D.: Distributed self-stabilizing placement of replicated resources in emerging networks. J. IEEE/ACM Trans. Netw. 13(3), 476–487 (2005). doi:10.1109/TNET.2005.850196
Kumar, R., Sahoo, G.: Cloud computing simulation using CloudSim. (2014). arXiv:1403.3253. doi:10.14445/22315381/IJETT-V8P216
Leitner, P., Hummer, W., Dustdar, S.: Cost-based optimization of service compositions. J. IEEE Trans. Serv. Comput. 6(2), 239–251 (2013). doi:10.1109/TSC.2011.53
Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)
Newman, M.E.J.: Analysis of weighted networks. J. Phys. Rev. E. 70(5), 056131 (2004). doi:10.1103/PhysRevE.70.056131
Noack, A.: Energy models for graph clustering. J. Graph Algorithms Appl. 11(2), 453–480 (2007)
Serrano, N., Hernantes, J., Gallardo, G.: Service-oriented architecture and legacy systems. IEEE J. Softw. 31(5), 15–19 (2014). doi:10.1109/MS.2014.125
Spielman, D.: Spectral Graph Theory. Lecture Notes. Yale University, New Haven (2009)
Tang, X., Xu, J.: QoS-aware replica placement for content distribution. J IEEE Trans. Parallel Distrib. Syst. 16(10), 921–932 (2005). doi:10.1109/TPDS.2005.126
Tartare, G., Hamad, D., Azahaf, M., et al.: Spectral clustering applied for dynamic contrast-enhanced MR analysis of time-intensity curves. J. Comput. Med. Imaging Graph. 38(8), 702–713 (2014). doi:10.1016/j.compmedimag.2014.07.005
Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)
Wada, H., Suzuki, J., Yamano, Y., et al.: Evolutionary deployment optimization for service—oriented clouds. J. Softw. Pract. Exp. 41(5), 469–493 (2011). doi:10.1002/spe.1032
Wang, H., Liu, P., Wu, J.: A QoS-aware heuristic algorithm for replica placement. In: Proceedings of the 7th IEEE/ACM international conference on grid computing, pp. 96–103 (2006). doi:10.1109/ICGRID.2006.311003
Xu, Z., et al.: Crowdsourcing based description of urban emergency events using social media big data. IEEE Trans. Cloud Comput. doi:10.1109/TCC.2016.2517638
Xu, Z., et al.: Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102, 217–225 (2015)
Xu, Z., et al.: Semantic enhanced cloud environment for surveillance data management using video structural description. Computing 98(1–2), 35–54 (2016)
Yau, S.S., Ye, N., Sarjoughian, H.S., et al.: Toward development of adaptive service-based software systems. J. IEEE Trans. Serv. Comput. 2(3), 247–260 (2009). doi:10.1109/TSC.2009.17
Zhao, W., Xu, X., Wang, Z.: Load balancing-based replica placement strategy in data grid system. In: The third IEEE international conference on education technology and training, pp. 314–316 (2010)
Zheng, Z, Zhang, Y, Lyu, M.R.: CloudRank: a QoS-driven component ranking framework for cloud computing. In: The 29th IEEE symposium on reliable distributed systems, pp. 184–193 (2010). doi:10.1109/SRDS.2010.29
Acknowledgments
This research was supported by the National Natural Science Foundation Program of China (61572116, 61572117, 61502089), the National key Technology R&D Program of the Ministry of Science and Technology (2015BAH09F02), the Provincial Scientific and Technological Project (2015302002), and the Special Fund for Fundamental Research of Central Universities of Northeastern University (N150408001, N150404009).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, J., Zhang, B., Yang, L. et al. A replicas placement approach of component services for service-based cloud application. Cluster Comput 19, 709–721 (2016). https://doi.org/10.1007/s10586-016-0552-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10586-016-0552-2