Skip to main content
Log in

Energy aware scheduling of deadline-constrained tasks in cloud computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Energy efficiency is the predominant issue which troubles the modern ICT industry. The ever-increasing ICT innovations and services have exponentially added to the energy demands and this proliferated the urgency of fostering the awareness for development of energy efficiency mechanisms. But for a successful and effective accomplishment of such mechanisms, the support of underlying ICT platform is significant. Eventually, Cloud computing has gained attention and has emerged as a panacea to beat the energy consumption issues. This paper scrutinizes the importance of multicore processors, virtualization and consolidation techniques for achieving energy efficiency in Cloud computing. It proposes Green Cloud Scheduling Model (GCSM) that exploits the heterogeneity of tasks and resources with the help of a scheduler unit which allocates and schedules deadline-constrained tasks delimited to only energy conscious nodes. GCSM makes energy-aware task allocation decisions dynamically and aims to prevent performance degradation and achieves desired QoS. The evaluation and comparative analysis of the proposed model with two other techniques is done by setting up a Cloud environment. The results indicate that GCSM achieves 71 % of energy savings and high performance in terms of deadline fulfillment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Huber, P., Mills, M.P.: Dig more coal—the PCs are coming. Forbes, pp. 70–72 (1999). http://www.forbes.com/forbes/1999/0531/6311070a.html. Accessed 10 August 2014

  2. Koomey, J.G.: Rebuttal to testimony on ’Kyoto and the internet: the energy implications of the digital economy’. Lawrence Berkeley National Laboratory (2000). Accessed from: http://enduse.lbl.gov/Info/annotatedmillstestimony.pdf

  3. Roth, K., Goldstein, F. Kleinman, J.: Energy Consumption by Office and Telecommunications Equipment in Commercial Buildings-Volume I: Energy Consumption Baseline. Washington, DC: Prepared by Arthur D. Little for the U.S. Department of Energy. A.D. Little Reference no. 72895 00. http://www.biblioite.ethz.ch/downloads/Roth_ADL_1.pdf (January 2002)

  4. OGasawara, A.: Energy Issues Confronting the Information and Communications Society-Need to reduce the power Consumed by the Communications Infrastructure. Science and Technology Trends. Quarterly Review, 21. http://www.nistep.go.jp/achiev/ftx/eng/stfc/stt021e/qr21pdf/STTqr2102.pdf (October 2006)

  5. Koomey, J.: Growth in data center electricity use 2005 to 2010. A report by Analytical Press, completed at the request of The New York Times. http://www.missioncriticalmagazine.com/ext/resources/MC/Home/Files/PDFs/Koomey_Data_Center.pdf (2011) Accessed 25th June, 2014

  6. Plepys, A.: The grey side of ICT. Environ. Impact Assess. Rev. 22(5), 509–523 (2002). doi:10.1016/S0195-9255(02)00025-2

    Article  Google Scholar 

  7. Christensen, K.J., Gunaratne, C., Nordman, B., George, A.D.: The next frontier for communications networks: power management. Comput. Commun. 27(18), 1758–1770 (2004). doi:10.1016/j.comcom.2004.06.012

    Article  Google Scholar 

  8. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A.: A taxonomy and survey of energy-efficient data centers and cloud computing systems. Adv. Comput. 82(2), 47–111 (2011)

    Article  Google Scholar 

  9. Jing, S.Y., Ali, S., She, K., Zhong, Y.: State-of-the-art research study for green cloud computing. J. Supercomput. 65(1), 445–468 (2013)

    Article  Google Scholar 

  10. Lee, Y.C., Zomaya, A.Y.: Energy efficient utilization of resources in cloud computing systems. J. Supercomput. 60(2), 268–280 (2012). doi:10.1007/s11227-010-0421-3

    Article  Google Scholar 

  11. Hille, E.: Cloudcommons. Top 10 Apps for Cloud, Private Cloud Implementation Issues http://www.cloudcomputing.sys-con.com/node/1653265. Accessed February 20 2014

  12. Dillon, T., Wu, C., Chang, E.: Cloud computing: issues and challenges. In: 24th IEEE International Conference on Advanced Information Networking and Applications (AINA), Austrailia, pp. 27–33 (2010) doi:10.1109/AINA.2010.187

  13. Marston, S., Li, Z., Bandyopadhyay, S., Zhang, J., Ghalsasi, A.: Cloud computing–the business perspective. Decis. Support Syst. 51(1), 176–189 (2011). doi:10.1016/j.dss.2010.12.006

    Article  Google Scholar 

  14. Kaur, T., Chana, I.: Energy efficiency techniques in cloud computing—a survey and taxonomy. ACM Comput. Surv. 48(2) Article 22 (2015). doi:10.1145/2742488

  15. Mills, M.P.: The cloud begins with coal big data, big networks, big infrastructure and big power—an overview of the electricity used by the global digital ecosystem. http://www.techpundit.com/wpcontent/uploads/2013/07/Cloud_Begins_With_Coal.pdf?c761ac&c761ac (August 2013). Accessed October 2013

  16. Cloudcommons 2012. Top 10 Apps for Cloud, Private Cloud Implementation Issues. 18th November, 2010. Retrieved 20th February, 2013 from: http://cloudcomputing.sys-con.com/node/1653265

  17. Garg, S.K., Buyya, R.: Green cloud computing and environmental sustainability. Harnessing Green IT: Principles and Practices, pp. 315–340. Wiley, New York (2012)

  18. Gao, Y., Wang, Y., Gupta, S.K., Pedram, M.: An energy and deadline aware resource provisioning, scheduling and optimization framework for cloud systems. In: Proceedings of the Ninth IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis, p. 31. IEEE Press (2013)

  19. Dong, Z., Liu, N., Rojas-Cessa, R.: Greedy scheduling of tasks with time constraints for energy-efficient cloud-computing data centers. J. Cloud Comput. 4(1), 1–14 (2015)

    Article  Google Scholar 

  20. Bo, L., Li, J., Huai, J., Wo, T., Li, Q., Zhong, L.: EnaCloud: an energy-saving application live placement approach for cloud computing environments. International Conference on Cloud Computing. CLOUD’09, pp. 17–24. IEEE, Bangalore (2009)

  21. Rodero, I., Jaramillo, J., Quiroz, A., Parashar, M., Guim, F., Poole, S.: Energy-efficient application-aware online provisioning for virtualized Clouds and data centers. In International Green Computing Conference, pp. 31–45 (2010). doi:10.1109/GREENCOMP.2010.5598283

  22. Liao, J.S., Chang, C., Hsu, Y.L., Zhang, X.W., Lai, K.C., Hsu, C.H.: Energy-efficient resource provisioning with SLA consideration on cloud computing. In: 41st International Conference on Parallel Processing Workshops (ICPPW), Pittsburgh, 206–211 (September 2012)

  23. Knauth, T., Fetzer, C.: Energy-aware scheduling for infrastructure clouds. In: 4th International Conference on Cloud Computing Technology and Science (CloudCom, 2012) Taipei, IEEE, pp. 58–65 (2012). doi:10.1109/CloudCom.2012.6427569

  24. Pahlavan, A., Momtazpour, M., Goudarzi, M.: Variation-aware server placement and task assignment for data center power minimization. In: 10th IEEE International Symposium on Parallel and Distributed Processing with Applications (ISPA), pp. 158–165 (2012)

  25. Garg, S.K., Yeo, C.S., Buyya, R.: Green cloud framework for improving carbon efficiency of clouds. In: Euro-Par 2011 Parallel Processing. Springer, Berlin, pp. 491–502 (2011)

  26. Li, J., Peng, J., Lei, Z., Zhang, W.: An energy-efficient scheduling approach based on private clouds. J. Inf. Comput. Sci. 8(4), 716–724 (2011)

    Google Scholar 

  27. Deore, S.S., Patil, A.N., Bhargava, R.: Energy-efficient scheduling scheme for virtual machines in cloud computing. Int. J. Comput. Appl. 56(10), 19–25 (2012)

    Google Scholar 

  28. Deore, S.S., Patil, A.K.: Energy-efficient job scheduling and allocation scheme for virtual machines in private clouds. Energy 5(1), 56–60 (2013)

    Google Scholar 

  29. Quan, D.M., Somov, A., Dupont, C.: Energy usage and carbon emission optimization mechanism for federated data centers. Energy Efficient Data Centres. Lecture Notes in Computer Science, vol. 7396, pp. 129–140. Springer, Berlin (2012)

  30. Quan, D.M., Mezza, F., Sannenli, D., Giafreda, R.: T-Alloc: a practical energy efficient resource allocation algorithm for traditional data centers. Future Gener. Comput. Syst. 28(5), 791–800 (2012). doi:10.1016/j.future.2011.04.020

    Article  Google Scholar 

  31. Quan, D.M., Basmadjian, R., Meer, H.D., Lent, R., Mahmoodi, T., Sannelli, D., Mezza, F., Telesca, L., Dupont, C.: Energy efficient resource allocation strategy for cloud data centres. Computer and Information Sciences II, pp. 133–141. Springer, London (2012)

  32. Beloglazov, A., Buyya, R.: Energy efficient allocation of virtual machines in cloud data centers. In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing (CCGrid), pp. 577–578 (May 2010). doi:10.1109/CCGRID.2010.45

  33. Beloglazov, A., Buyya, R.: Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in Cloud data centers. Concurr. Comput. Pract. Exp. 24(13), 1397–1420 (2012). doi:10.1002/cpe.1867

    Article  Google Scholar 

  34. Garg, S.K., Yeo, C.S., Anandasivam, A., Buyya, R.: Environment-conscious scheduling of HPC applications on distributed Cloud-oriented data centers. J. Parallel Distrib. Comput. 71(6), 732–749 (2011). doi:10.1016/j.jpdc.2010.04.004

    Article  MATH  Google Scholar 

  35. Brunzel, T., Giacomo, D.D.: Cloud computing evaluation: how it differs to traditional IT outsourcing. Master’s Thesis. Jönköping International Business School, Jönköping University (May, 2010). http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-12761

  36. Kansal, N.D., Chana, I.: Existing load balancing techniques in cloud computing: a systematic review. J. Inf. Syst. Commun. 3(1), 87–91 (2012)

    Google Scholar 

  37. Kansal, N.D., Chana, I.: Artificial bee colony based energy-aware resource utilization technique for cloud computing. Concurr. Comput. Pract. Exp. 27(5), 1207–1225 (2014). doi:10.1002/cpe.3295

    Article  Google Scholar 

  38. Wang, R., Le, W., Zhang, X.: Design and implementation of an efficient load-balancing method for virtual machine cluster based on cloud service. In: 4th International Conference on Wireless, Mobile and Multimedia Networks (ICWMMN 2011, Beijing), pp. 321–324 (2011)

  39. Coskun, A.Y., Rosing, T.S.: Improving energy efficiency and reliability through workload scheduling in high-performance multicore processors. http://vote.dvcon.com/sites/default/files/COSKUN-MPSOCREL_Posted.pdf

  40. Kim, S.G., Eom, H., Yeom, H.Y.: Virtual machine scheduling for multicores considering effects of shared on-chip last level cache interference. In: International Green Computing Conference (IGCC), IEEE, San Jose, USA, 1–6 (June, 2012). doi:10.1109/IGCC.2012.6322250

  41. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing. Future Gener. Comput. Syst. 28, 755–768 (2012). doi:10.1016/j.future.2011.04.017

    Article  Google Scholar 

  42. What is Server Consolidation. Accessed from http://www.techopedia.com/definition/16016/server-consolidation. October 13, 2014

  43. Kessaci, Y., Mezmaz, M., Melab, N., Talbi, E.G., Tuyttens, D.: Parallel evolutionary algorithms for energy aware scheduling. Intelligent Decision Systems in Large-Scale Distributed Environments, pp. 75–100. Springer, Berlin (2011)

  44. Vialle, S., Contassot-Vivier, S., Jost, T.: Optimizing computing and energy performances in heterogeneous clusters of CPUs and GPUs. In: Ahmad, I., Ranka, S. (eds.) Handbook of Energy Aware and Green Computing, vol. 2. CRC Press, Boca Raton (2012)

    Google Scholar 

  45. Kansal, A., Zhao, F., Liu, J., Kothari, N., Bhattacharya, A.A.: Virtual machine power metering and provisioning. In: Proceedings of the 1st ACM symposium on cloud computing. ACM, New York, pp. 39–50 (2010). doi:10.1145/1807128.1807136

  46. Hernandez, P.: Microsoft Joulemeter: Using Software to Green the Data Center. http://gigaom.com/2010/04/25/green-software-qa-microsoft-research-joulemeter/. June 10, 2014

  47. Chen, W., Lee, Y.C., Zomaya, A.Y.: Exploiting heterogeneous computing systems for energy efficiency. In: Ahmad, I., Ranka, S. (eds.) Handbook of Energy Aware and Green Computing, vol. 2. CRC Press, Boca Raton (2012)

    Google Scholar 

  48. Gopalakrishnan, S.: Sharp utilization thresholds for some realtime scheduling problems. ACM SIGMETRICS Perform. Eval. Rev. 39(4), 12–22 (2012)

    Article  Google Scholar 

  49. Kaur, T., Chana, I.: Energy efficient cloud: trends, challenges and future directions. In: International Conference on Next Generation Computing and Communication Technologies (ICNGCCT 2014, Dubai, UAE), pp. 17–24 (2014)

  50. Parallel Workload Archives. Accessed from http://www.cs.huji.ac.il/labs/parallel/workload/logs.html

  51. Netto, M.A.S., Buyya, R.: Offer-based scheduling of deadline-constrained bag-of-tasks applications for utility computing systems. In: IEEE International Symposium on Parallel and Distributed Processing. IPDPS 2009, pp. 1–11 (2009)

  52. Chana, I., Kaur, T.: Resource scheduling techniques in utility computing: a survey. Int. J. Syst. Service-Oriented Eng. 4(2), 44–65 (2014)

  53. Hussin, M., Lee, Y.C. Zomaya, A.Y.: Priority-based scheduling for large-scale distribute systems with energy awareness. In: 9th IEEE International Conference on Dependable, Autonomic and Secure Computing, Australia, pp. 503–509 (2011)

Download references

Acknowledgments

This research was supported by University Grants Commission (UGC) sponsored major research Project “Energy Aware Resource Scheduling for Cloud Computing” under F. No. 41-629/2012(SR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarandeep Kaur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, T., Chana, I. Energy aware scheduling of deadline-constrained tasks in cloud computing. Cluster Comput 19, 679–698 (2016). https://doi.org/10.1007/s10586-016-0566-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0566-9

Keywords