Skip to main content
Log in

Assessing multiscale permutation entropy for short electroencephalogram recordings

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Electroencephalogram (EEG) has been a standard tool to monitor the status of the brain. For a quantification of EEG recordings, permutation entropy (PE) has been of interest due to simplicity and robustness to noise. A multiscale extension of PE, called multiscale PE (MPE), has been promising for describing the dynamical characteristics of EEG over multiple temporal scales. However, an imprecise estimation of MPE at large scales limits its application for analyzing of short EEG recordings. Here, with the aim of estimating MPE accurately, a modified MPE (MMPE) measure is presented. The proposed MMPE consists of two processes: (1) computation of PE values of all possible coarse-grained EEG time-series, (2) averaging of PE values at each scale. Through simulations with two synthetic signals, i.e., white and 1 / f noises, MMPE proves its capability over MPE in terms of accuracy. Experimental results using the actual EEG recordings indicate that MMPE is an improved quantifier in the sense that MMPE reduces variance of entropy estimation in comparison with MPE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stam, C., Jelles, B., Achtereekte, H., Rombouts, S., Slaets, J., Keunen, R.: Investigation of EEG non-linearity in dementia and Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol. 95(5), 309–317 (1995)

    Article  Google Scholar 

  2. Jeong, J.: EEG dynamics in patients with Alzheimer’s disease. Clin. Neurophysiol. 115(7), 1490–1505 (2004)

    Article  Google Scholar 

  3. Chen, D., Lu, D., Tian, M., He, S., Tian, J., Cai, C., Li, X.: Towards energy-efficient parallel analysis of neural signals. Clust. Comput. 16, 39–53 (2013)

    Article  Google Scholar 

  4. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science. McGraw-Hill, New York (2000)

    Google Scholar 

  5. Monnerat, B.Z., Velasco, T.R., Assirati, J.A., Carlotti, C.G., Sakamoto, A.C.: On the prognostic value of ictal EEG patterns in temporal lobe epilepsy surgery: A cohort study. Seizure 22(4), 287–291 (2013)

    Article  Google Scholar 

  6. Crepeau, A.Z., Rabinstein, A.A., Fugate, J.E., Mandrekar, J., Wijdicks, E.F., White, R.D., Britton, J.W.: Continuous EEG in therapeutic hypothermia after cardiac arrest prognostic and clinical value. Neurology 80(4), 339–344 (2013)

    Article  Google Scholar 

  7. Park, R.C., Jung, H., Shin, D.-K., Kim, G.-J., Yoon, K.-H.: M2M-based smart health service for human UI/UX using motion recognition. Clust. Comput. 18, 221–232 (2015)

    Article  Google Scholar 

  8. Do, L.-N., Yang, H.-J., Kim, S.-H., Lee, G.-S., Kim, S.-H.: A multi-voxel-activity-based feature selection method for human cognitive states classification by functional magnetic resonance imaging data. Clust. Comput. 18, 199–208 (2015)

    Article  Google Scholar 

  9. Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl Acad. Sci. 88(6), 2297–2301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Richman, J.S., Moorman, J.R.: Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)

    Google Scholar 

  11. Chung, K., Oh, S.: Improvement of speech signal extraction method using detection filter of energy spectrum entropy. Clust. Comput. 18, 629–635 (2015)

    Article  Google Scholar 

  12. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time-series. Phys. Rev. Lett. 88(17), 174102 (2002)

    Article  Google Scholar 

  13. Nicolaou, N., Georgiou, J.: The use of permutation entropy to characterize sleep electroencephalograms. Clin. EEG Neurosci. 42(1), 24–28 (2011)

    Article  Google Scholar 

  14. Li, X., Ouyang, G., Richards, D.A.: Predictability analysis of absence seizures with permutation entropy. Epilepsy Res. 77(1), 70–74 (2007)

    Article  Google Scholar 

  15. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time-series. Phys. Rev. Lett. 89, 068102 (2002)

    Article  Google Scholar 

  16. Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of biological signals. Phys. Rev. Lett. 71, 021906 (2005)

    MathSciNet  Google Scholar 

  17. Aziz, W., Arif, M.: Multiscale permutation entropy of physiological time-series. In: 9th International Multitopic Conference 2005 (IEEE INMIC 2005) Karachi (2005)

  18. Ouyang, G., Li, J., Liu, X., Li, X.: Dynamic characteristics of absence EEG recordings with multiscale permutation entropy analysis. Epilepsy Res. 104(3), 246–252 (2013)

  19. Shannon, C.E.: Communication theory of secrecy systems. AT&T Tech. J. 28(4), 656–715 (1949)

    MathSciNet  MATH  Google Scholar 

  20. Amig, J.M., Zambrano, S., Sanjun, M.A.: True and false forbidden patterns in deterministic and random dynamics. Europhys. Lett. 79(5), 50001 (2007)

    Article  MathSciNet  Google Scholar 

  21. Ouyang, G., Dang, C., Richards, D.A., Li, X.: Ordinal pattern based similarity analysis for EEG recordings. Clin. Neurophysiol. 121(5), 694–703 (2010)

    Article  Google Scholar 

  22. Andrzejak, R.G., Lehnertz, K., Mormann, F., Rieke, C., David, P., Elger, C.E.: Indications of nonlinear deterministic and finite-dimensional structures in time-series of brain electrical activity: dependence on recording region and brain state. Phys. Rev. E 64(6), 061907 (2001)

    Article  Google Scholar 

  23. Bruzzo, A.A., Gesierich, B., Santi, M., Tassinari, C.A., Birbaumer, N., Rubboli, G.: Permutation entropy to detect vigilance changes and preictal states from scalp EEG in epileptic patients: a preliminary study. Neurol. Sci. 29(1), 3–9 (2008)

    Article  Google Scholar 

  24. Olofsen, E., Sleigh, J., Dahan, A.: Permutation entropy of the electroencephalogram: a measure of anaesthetic drug effect. Br. J. Anaesth. 101(6), 810–821 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The present research has been conducted by the research Grant of Kwangwoon University in 2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Yeon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YS., Hyun, K. & Choi, JY. Assessing multiscale permutation entropy for short electroencephalogram recordings. Cluster Comput 19, 2305–2314 (2016). https://doi.org/10.1007/s10586-016-0648-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0648-8

Keywords

Navigation