Skip to main content

The automatic estimating method of the in-degree of nodes in associated semantic network oriented to big data

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Association Link Network (ALN) can organize massive news data to support many intelligent Web applications. The degree estimating can facilitate the rapid positioning of Web resources in ALN. In our prior work, we have well studied the degree estimating of out-degree of nodes in ALN. In this paper, we proposed an automatic estimating method of the in-degree of nodes in ALN to further reduce the searching scope for the rapid positioning. First, we explore the main factors of forming the in-degree of any one node from semantic feature view by qualitative analysis. Then, based on the result of qualitative analysis, we propose the model for estimating the in-degree of any one node in ALN, including the method framework, the first automatic estimating method and its further optimization method. Experimental results show that the proposed estimating method as well as the optimization method have a high precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)

    Article  Google Scholar 

  2. Albert, R., Jeong, H., Barabási, A.-L.: Diameter of the world-wide web. Nature 401, 130–131 (1999)

    Article  Google Scholar 

  3. Prokhorenkova, L.: General results on preferential attachment and clustering coefficient. Optim. Lett. (2016). doi:10.1007/s11590-016-1030-8

  4. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the internet topology. Comp. Comm. Rev. 29, 251–262 (1999)

    Article  MATH  Google Scholar 

  5. Kovács, I., Mizsei, R., Csermely, P.: A unified data representation theory for network visualization, ordering and coarse-graining. Sci. Rep. (Nature) 5(13786), 1–10 (2015)

    Google Scholar 

  6. Barzel, B., Liu, Y.-Y., Barabási, A.-L.: Constructing minimal models for complex system dynamics. Nat. Commun. 6(7186), 1–8 (2015)

    Google Scholar 

  7. Duncan, A., Liao, S., Vejchodsky, T., Erban, R., Grima, R.: Noise-induced multistability in chemical systems: discrete vs continuum modeling. Phys. Rev. 91(4), 042111 (2015)

    Article  Google Scholar 

  8. Kelleher, D.J., Reese, T.M., Yott, D.T., Brzoska, A.: Analysing properties of the C. Elegans neural network: mathematically modeling a biological system. Quant. Biol. (2011)

  9. Luo, X.-F., Xu, Zh, Yu, J., et al.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)

    Article  Google Scholar 

  10. Zhang, S.X., Luo, X.F., Xuan, J.Y., Chen, X., Xu, W.M.: Discovering small-world in association link networks for association learning. World Wide Web 17(2), 229–254 (2014)

    Article  Google Scholar 

  11. Clauseta, A., Tanner, H.G., Abdallah, C.T., Byrne, R.H.: Controlling across complex networks-Emerging links between networks and control. Annu. Rev. Control 32, 183–192 (2008)

    Article  Google Scholar 

  12. Zhang, S.X., Wang, Y., Liu, W.D., Yin, X.B.: A model for estimating the out-degree of nodes in associated semantic network from semantic feature view. Concurr. Comput. 28(15), 4177–4193 (2016)

    Article  Google Scholar 

  13. Luo, X.-F., Fang, N., et al.: Semantic representation of scientific documents for the e-science Knowledge Grid. Concurr. Comput. Pract. Exp. 20(7), 839–862 (2008)

    Article  Google Scholar 

  14. Luo, X.-F., Fang, N.: Experimental study on the extraction and distribution of textual domain keywords. Concurr. Comput. Pract. Exp. 20, 1917–1932 (2008)

    Article  Google Scholar 

  15. Luo, X., Zhang, J., Ye, F., Wang, P., Cai, C.: Power Series Representation Model of Text Knowledge Based on Human Concept Learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(1), 86–102 (2014)

  16. Liu, W.D., Luo, X.F., Gong, Z.G., Xuan, J.Y., Kou, N.M., Xu, Zh: Discovering the core semantics of event from social media. Future Gener. Comput. Syst. 64, 175–185 (2016)

    Article  Google Scholar 

  17. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceedings of the 1993 International Conf. Management of Data (SIGMOD 93), pp. 207–216 (1993)

  18. Jiang, T., Tan, A., Wang, K.: Mining generalized associations of semantic relations from textual web content. IEEE Trans. Knowl. Data Eng. 19(2), 164–179 (2007)

    Article  Google Scholar 

  19. Xu, Zh, et al.: Mining temporal explicit and implicit semantic relations between entities using web search engines. Future Gener. Comput. Syst. 37, 468–477 (2014)

    Article  Google Scholar 

  20. Hu, C., Xu, Zh, et al.: Semantic link network based model for organizing multimedia big data. IEEE Trans. Emerg. Topics Comput. 2(3), 376–387 (2014). doi:10.1109/TETC.2014.2316525

    Article  MathSciNet  Google Scholar 

  21. Chen, Y.L., Li, F.Y., Fan, J.Q.: Mining association rules in big data with NGEP. Clust. Comput. 18(2), 577–585 (2015)

    Article  Google Scholar 

  22. Luo, X.-F., Hu, Q.-L.: Discovery of textual knowledge flow based on the management of knowledge maps. Concurr. Comput. Pract. Exp. 20, 1791–1806 (2008)

    Article  Google Scholar 

  23. Zhang, S.X., Lu, K., Liu, W., Yin, X., Zhu, G.: Generating associated knowledge flow in large-scale web pages based on user interaction. Comput. Syst. Sci. Eng. 30(5), 377–389 (2015)

    Google Scholar 

  24. Yen, N.Y., Park, J.J.J.H., Jin, Q., Shih, T.K.: Modeling user-generated contents: an intelligent state machine for user-centric search support. Pers. Ubiquitous Comput. 17(8), 1731–1739 (2013)

    Article  Google Scholar 

  25. Li, Q., Lau, R., Shih, T.-K. et al.: Technology supports for distributed and collaborative learning over the internet. ACM Trans. Internet Technol. 8(2): 10:1–10:24 (2008)

  26. Xu, Zh, et al.: Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102, 217–225 (2015)

    Article  Google Scholar 

  27. Xu, Zh, et al.: Generating temporal semantic context of concepts using web search engines. J. Netw. Comput. Appl. 43, 42–55 (2014)

    Article  Google Scholar 

  28. Watts, D.J., Strogatz, S.H.: Collective dynamics of “Small-World” networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  29. Kleinberg, J.M.: Navigation in a small world. Nature 406, 845 (2000)

    Article  Google Scholar 

  30. Fronczak, A., Fronczak, P., Hołyst, J.A.: Average path length in random networks. Phys. Rev. E 70, 056110-1–056110-7 (2004)

    Article  MATH  Google Scholar 

  31. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schich, M., Song, C., Ahn, Y.Y., Mirsky, A., Martino, M., Barabási, A.-L., Helbing, D.: A network framework of cultural history. Science 345, 558–562 (2014)

    Article  Google Scholar 

  33. Xuan, J.Y., Jie, L., Zhang, G.Q., Luo, X.F.: Topic model for graph mining. IEEE Trans. Cybern. 45(12), 2792–2803 (2015)

    Article  Google Scholar 

  34. Jin, S., Lin, W., Yin, H., Yang, S., Li, A., Deng, B.: Community structure mining in big data social media networks with MapReduce. Clust. Comput. 18(3), 999–1010 (2015)

    Article  Google Scholar 

  35. Jiang, H., Chen, Y., Qiao, Zh, Weng, T.-H., Li, K.-C.: Scaling up MapReduce-based big data processing on multi-GPU systems. Clust. Comput. 18(1), 369–383 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Anhui Province Universities (No. KJ2015A111, KJ2011Z098), in part by the National Science and Technology Major Project under Grant 2013ZX01033002-003, in part by the National Science Foundation of China under Grant 61300202, and in part by the Science Foundation of Shanghai under Grant 13ZR1452900.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Yin, X. & He, C. The automatic estimating method of the in-degree of nodes in associated semantic network oriented to big data. Cluster Comput 19, 1895–1905 (2016). https://doi.org/10.1007/s10586-016-0658-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0658-6

Keywords