Skip to main content
Log in

Improved SLIC imagine segmentation algorithm based on K-means

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Dividing the image into superpixels contributes to further processing of the image. Simple linear iterative clustering (SLIC) algorithm achieves good segmentation result by clustering color and distance characteristics of pixels. However, finite superpixels easily cause under-segmentation. Therefore, the work corrects segmentation result of SLIC by k-means clustering method calculating similarity based on weighted Euclidean distance. After that, the under-segmentation superpixel blocks are conducted with k-means clustering based on binary classification. Result shows that the corrected SLIC segmentation has better visual effect and index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fulkerson, B., Vedaldi, A., Soatto, S.: Class segmentation and object localization with superpixel neighborhoods. Proceedings 30(2), 670–677 (2009)

    Google Scholar 

  2. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  3. Felzenszwalb, P.F.: Efficient graph-based image segmentation. Int. J. Comput. Vis. (IJCV) 59(2), 167–181 (2004)

    Article  Google Scholar 

  4. Moore, A.P., et al.: Superpixel lattices. IEEE Comput. Vis. Pattern Recognit. (CVPR) 2008, 1–8 (2008)

    Google Scholar 

  5. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. Proceedings of Computer Vision—ECCV, European Conference on Computer Vision, Heraklion, Crete, Greece, September 5–11, pp. 211–224 (2010)

  6. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based onimmersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  7. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward featurespace analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  8. Levinshtein, A., et al.: TurboPixels: fast superpixels using geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 31(12), 2290–2297 (2009)

    Article  Google Scholar 

  9. Achanta, R., et al.: SLIC superpixels. Epfl (2010)

  10. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28(1), 100–108 (1979)

    Article  MATH  Google Scholar 

  11. Leon, K., et al.: Color measurement in L*a*b* units from RGB digital images. Food Res. Int. 39(10), 1084–1091 (2006)

    Article  Google Scholar 

  12. Martin, D., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. ICCV 2001. Proceedings of Eighth IEEE International Conference on Computer Vision, vol. 2, pp. 416–423. IEEE (2001)

  13. Van Den Bergh, M., et al.: SEEDS: superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111(3), 1–17 (2015)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-yan Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Cy. Improved SLIC imagine segmentation algorithm based on K-means. Cluster Comput 20, 1017–1023 (2017). https://doi.org/10.1007/s10586-017-0792-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0792-9

Keywords

Navigation