Skip to main content
Log in

A multilayer FOCUSS approach for sparse representation

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Focal Underdetermined System Solver (FOCUSS) is a powerful method for sparse representation, in which the Lp-norm like cost function is very often used. However, this cost function is not only nondifferentiable but also can be very ill-conditioned in some situations. The local minima problem of FOCUSS is discussed in this paper. Moreover, to solve this problem, we first extend the Lp-norm like cost function to its corresponding Lp-approximation. After this, we analyze the nonconvexity of the new cost function, which results in that FOCUSS algorithm gets stuck in the local minima in many situations, especially when the hidden sources are not very sparse. To reduce the number of the local minima, a multilayer FOCUSS is developed in this paper. Comparing with the conventional FOCUSS, the experiments inclusing MRI reconstruction demonstrate that multilayer FOCUSS can significantly improve the performance. Even for some very challenging cases, where the conventional FOCUSS fails, multilayer FOCUSS still works well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. He, Z.S., Xie, S.L., Fu, Y.L.: Sparsity analysis of signals. Prog. Nat. Sci. 16(8), 879–884 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. He, Z.S., Xie, S.L., Fu, Y.L.: Sparse representation and blind source separation of Ill-posed mixtures. Sci. China F 49(5), 639–652 (2006)

    Article  MathSciNet  Google Scholar 

  3. He, Z.S., Cichocki, A., Zdunek, R., Cao, J.T.: CG-M-FOCUSS and Its Application to Distributed Compressed Sensing. Lecture Notes in Computer Science 5263, 237–245 (2008)

  4. Xie, K., He, Z., Cichocki, A.: Convergence analysis of the FOCUSS algorithm. IEEE Trans. Neural Netw. Learn. Syst. 26(3), 601–613 (2015)

    Article  MathSciNet  Google Scholar 

  5. Xie, K., He, Z., Cichocki, A., Fang, X.: Rate of convergence of the FOCUSS algorithm. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2016.2532358

  6. Aharon, M., Elad, M., Bruckstein, A.M.: The k-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  MATH  Google Scholar 

  7. Bofill, P., Zibulevsky, M.: Underdetermined blind source separation using sparse representations. Signal Process. 81, 2353–2362 (2001)

    Article  MATH  Google Scholar 

  8. Chen, S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. Wiley, New York (2003)

    Google Scholar 

  10. Cotter, S.F., Rao, B.D., Engan, K., Kreutz-Delgado, K.: Sparse solutions to linear inverse problems with multiple measurement vectors. IEEE Trans. Signal Process. 53(7), 2477–2488 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donoho, D.L., Elad, M.: Maximal sparsity representation via \(L\)1 minimization. Proc. Natl. Acad. Sci. 100, 2197–2202 (2003)

    Article  MATH  Google Scholar 

  12. Georgiev, P., Theis, F., Cichocki, A.: Sparse component analysis and blind source separation of underdetermined mixtures. IEEE Trans. Neural Netw. 16(4), 992–996 (2005)

    Article  Google Scholar 

  13. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS: a recursive weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997)

    Article  Google Scholar 

  14. Kreutz-Delgado, K., Murry, J.F., Rao, B.D., et al.: Dictionary learning algorithms for sparse representation. Neural Comput. 15, 349–396 (2003)

    Article  MATH  Google Scholar 

  15. Li, Y.Q., Amari, S., Cichocki, A., Ho, D.W.C., Xie, S.L.: Underdetermined blind source separation based on sparse representation. IEEE Trans. Signal Process. 54(2), 423–437 (2006)

    Article  MATH  Google Scholar 

  16. Li, Y.Q., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source separation. Neural Comput. 16, 1193–1234 (2004)

    Article  MATH  Google Scholar 

  17. Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)

    Article  Google Scholar 

  18. Rao, B.D.: Signal processing with the sparseness constraint. In: Proceedings of the ICASSP, vol. III, pp. 1861–1864. Seattle, WA (1998)

  19. Rao, B.D., Gorodnitsky, I.F.: An affine scaling methodology for best basis selection. IEEE Trans. Signal Process. 47(1), 187–200 (1999)

    Article  MathSciNet  Google Scholar 

  20. Rao, B.D., Rngan, K., Cotter, S.F., Palmer, J., Kreutz-Delgado, K.: Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 51(3), 760–770 (2003)

    Article  Google Scholar 

  21. Saab, R., Yilmaz, O., Mckeown, M.J., Abugharbieh, R.: Underdetermined anechoic blind source separation via Lq-basis-pursuit. IEEE Trans. Signal Process. 55(8), 4004–4017 (2007)

    Article  MathSciNet  Google Scholar 

  22. Takigawa, I., Kudo, M., Toyama, J.: Performance analysis of minimum \(L\)1-norm solutions for underdetermined source separation. IEEE Trans. Signal Process. 52(3), 582–591 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhou, G., Cichocki, A., Zhang, Y., Mandic, D.: Group component analysis from multi-block data: common and individual feature extraction. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2015.2487364

  24. Yang, Z., Xiang, Y., Xie, K., Lai, Y.: Adaptive method for nonsmooth nonnegative matrix factorization. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2016.2517096

  25. Zhou, G., Zhao, Q., Zhang, Y., Adali, T., Xie, S., et al.: Linked component analysis from matrices to high-order tensors: applications to biomedical data. Proc. IEEE 104(2), 310–331 (2016)

    Article  Google Scholar 

  26. Chen, C., Liu, Z., Zhang, Y., Philip Chen, C.L., Xie, S.:. Asymptotic fuzzy tracking control for a class of stochastic strict-feedback systems. IEEE Trans Fuzzy Syst. doi:10.1109/TFUZZ.2016.2566807

  27. Chen, C., Liu, Z., Zhang, Y., Xie, S.: Coordinated motion/force control of humanoid robot with unknown sensor nonlinearity and manipulated object’s uncertainty. IEEE Trans. Syst. Man Cybern. doi:10.1109/TSMC.2016.2557219

  28. Liu, Y., Pan, M., Yu, R., Zhang, Y., Xie, S.: SD-MAC: spectrum database-driven MAC protocol for cognitive machine-to-machine networks. IEEE Trans. Veh. Technol. doi:10.1109/TVT.2016.2555084

  29. Liu, Y., Yuen, C., Yu, R., Zhang, Y., Xie, S.: Queuing-based energy consumption management for heterogeneous residential demands in smart grid. IEEE Transa. Smart Grid 7(3), 1650–1659 (2016)

    Article  Google Scholar 

  30. Majumdar, Angshul: FOCUSS based Schatten-p norm minimization for real-time reconstruction of dynamic contrast enhanced MRI. IEEE Signal Process. Lett. 19(5), 315–318 (2012)

    Article  Google Scholar 

  31. Kim, S.J., Koh, K., Lustig, M., Boyd, S., Gorinevsky, D.: An interiorpoint method for large-scale L1-regularized least squares. IEEE J. Sel. Topics Signal Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  32. Gorodnitsky, I.F., George, J., Rao, B.D.: Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr. Clin. Neurophysiol. 95(4), 231–251 (1995)

    Article  Google Scholar 

  33. Xu, P., Tian, Y., Chen, H.F., Yao, D.Z.: Lp norm iterative sparse solution for EEG source localization. IEEE Trans. Biomed. Eng. 54(3), 400–409 (2007)

    Article  Google Scholar 

  34. Rao, B.D., Engan, K., Cotter, S.F., Palmer, J., Kreutz-Delgado, K.: Subset selection in noise based on diversity measure minimization. IEEE Trans. Signal Process. 51(3), 760–770 (2003)

    Article  Google Scholar 

  35. Chen, J., Huo, X.M.: Theoretical results on sparse representations of multiple-measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  MATH  Google Scholar 

  36. He, Z.S., Xie, S.L., Ding, S.X., Cichocki, A.: Convolutive blind source separation in frequency domain based on sparse representation. IEEE Trans. Audio Speech Lang. Process. 15(5), 1551–1563 (2007)

    Article  Google Scholar 

  37. He, Z.S., Xie, S.L., Zhang, L.Q., Cichocki, A.: A note on Lewicki–Sejnowski Gradient for learning overcomplete representation. Neural Comput. 20(3), 636–643 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. He, Z.S., Cichocki, A., Zdunek, R., Xie, S.L.: Improved FOCUSS method with conjugate gradient (CG) iterations. IEEE Trans. Signal Process. 57(1), 399–404 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (61322306, 61333013, 61603153, 61305036 and 61304140), Science and Technology Programs of Guangzhou of China (201508010007, 201604010007), the Natural Science Foundation of Guangdong Province under Grant S2011030002886 (team project), Scientific Funds approved in 2013 and 2016 for Higher Level Talents by Guangdong Provincial universities, Project supported by Guangdong Province Higher Vocational Colleges & Schools Pearl River Scholar Funded Scheme in 2014 for financial support. And, the second author’s research was also support by Guangdong Universities’ Technology Research Center for Satelliate Navigation Chips and applications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Lai.

Appendix: Derivation of robust FOCUSS

Appendix: Derivation of robust FOCUSS

To solve optimization problem (6), here we similarly use the standard method of Lagrange multipliers to derive the iterative formula (7) for robust FOCUSS. Define the Lagrangian function \(L({\varvec{s}},{\varvec{\lambda }})\) as

$$\begin{aligned} L({\varvec{s}},{\varvec{\lambda }})=J({\varvec{s}})+{\varvec{\lambda }}^{T}({\varvec{A}s}-{\varvec{x}}). \end{aligned}$$
(11)

A necessary condition for a minimizing solution sto exist is that (\({\varvec{s}}^{*},{\varvec{\lambda }}^{*})\) to be a stationary point of the Lagrangian function \(L({\varvec{s}},{\varvec{\lambda }})\). Thus, we have

$$\begin{aligned} \left\{ {{\begin{array}{ll} {\frac{\partial L({\varvec{s}}^{*},{\varvec{\lambda }}^{*})}{\partial {\varvec{s}}}=\frac{\partial J({\varvec{s}}^{*})}{\partial {\varvec{s}}}+{\varvec{A}}^{T}\cdot {\varvec{\lambda }}^{*}=0} \\ {\frac{\partial L({\varvec{s}}^{*},{\varvec{\lambda }}^{*})}{\partial {\varvec{\lambda }}}={\varvec{A}s}-{\varvec{x}}=0} \\ \end{array} }} \right. \end{aligned}$$
(12)

where the partial derivative of \(J({\varvec{s}}^{*})\) with respect to \(s_i^*\) is

$$\begin{aligned} \frac{\partial J({\varvec{s}}^{*})}{\partial s_i }=\left| p \right| \cdot s_i^*\cdot \left( {\sqrt{\left( {s_i^*} \right) ^{2}+\delta }} \right) ^{p-2},{}{}{}{}i=1,\ldots ,n. \end{aligned}$$
(13)

As in [5, 14], the expression (13) can be re-written as

$$\begin{aligned} \frac{\partial J({\varvec{s}}^{*})}{\partial s_i }=2\left| p \right| \cdot {\varvec{\Pi }}({\varvec{s}}^{*})\cdot {\varvec{s}}^{*}, \end{aligned}$$
(14)

where \({\varvec{\Pi }}({\varvec{s}}^{*})\!=\!diag\left\{ \left[ {\sqrt{(s_1^*)^{2}+\delta }} \right] ^{2-p},\left[ {\sqrt{(s_1^*)^{2}+\delta }} \right] ^{2-p}\!,\right. \cdots ,\left. \left[ {\sqrt{(s_n^*)^{2}+\delta }} \right] ^{2-p} \right\} \). From (12) and (14), we know that the stationary point (\({\varvec{s}}^{*},{\varvec{\lambda }}^{*})\) satisfies the following equation sets

$$\begin{aligned} \left\{ {{\begin{array}{ll} {\frac{\partial L({\varvec{s}}^{*},{\varvec{\lambda }}^{*})}{\partial {\varvec{s}}}=2\left| p \right| \cdot {\varvec{\Pi }}({\varvec{s}}^{*})\cdot {\varvec{s}}^{*}+{\varvec{A}}^{T}\cdot {\varvec{\lambda }}^{*}=0} \\ {\frac{\partial L({\varvec{s}}^{*},{\varvec{\lambda }}^{*})}{\partial {\varvec{\lambda }}}={\varvec{A}s}-{\varvec{x}}=0} \\ \end{array} }} \right. \end{aligned}$$
(15)

From (15), carrying out some similar manipulations to [5, 14], we can derive

$$\begin{aligned} {\varvec{s}}^{*}={\varvec{\Pi }}^{-1}({\varvec{s}}^{*})\cdot {\varvec{A}}^{T}\cdot \left[ {{\varvec{A}}\cdot {\varvec{\Pi }}^{-1}({\varvec{s}}^{*})\cdot {\varvec{A}}^{T}} \right] ^{-1}{\varvec{x}}, \end{aligned}$$

which leads to the following iterative formula for solving the optimization problem (6):

$$\begin{aligned} {\varvec{s}}^{(k+1)}={\varvec{\Pi }}^{-1}({\varvec{s}}^{(k)})\cdot {\varvec{A}}^{T}\cdot \left[ {{\varvec{A}}\cdot {\varvec{\Pi }}^{-1}({\varvec{s}}^{(k)})\cdot {\varvec{A}}^{T}} \right] ^{-1}{\varvec{x}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Shi, M., Wang, P. et al. A multilayer FOCUSS approach for sparse representation. Cluster Comput 20, 1325–1332 (2017). https://doi.org/10.1007/s10586-017-0823-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0823-6

Keywords

Navigation