Skip to main content

Advertisement

Log in

Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Aiming at the difficult problem of plant leaf recognition on the large-scale database, a two-stage local similarity based classification learning (LSCL) method is proposed by combining local mean-based clustering (LMC) method and local sparse representation based classification (SRC) (LWSRC). In the first stage, LMC is applied to coarsely classifying the test sample. k nearest neighbors of the test sample, as a neighbor subset, is selected from each training class, then the local geometric center of each class is calculated. S candidate neighbor subsets of the test sample are determined with the first S smallest distances between the test sample and each local geometric center. In the second stage, LWSRC is proposed to approximately represent the test sample through a linear weighted sum of all \(k\times S\) samples of the S candidate neighbor subsets. Experimental results on the leaf image database demonstrate that the proposed method not only has a high accuracy and low time cost, but also can be clearly interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valentini, G.L., Lassonde, W., Khan, S.U., et al.: An overview of energy efficiency techniques in cluster computing systems. Cluster Comput. 16(1), 3–15 (2013)

    Article  Google Scholar 

  2. Han, C.: Improved SLIC imagine segmentation algorithm based on K-means. Cluster Comput. (2017). doi:10.1007/s10586-017-0792-9

  3. Yang, J., Zhang, L., Yang, J.Y., Zhang, D.: From classifiers to discriminators: a nearest neighbor rule induced discriminant analysis. Pattern Recognit. 44, 1387–1402 (2011)

    Article  MATH  Google Scholar 

  4. Kang, S.H., Kim, K.J.: A feature selection approach to find optimal feature subsets for the network intrusion detection system. Cluster Comput. 19(1), 325–333 (2016)

    Article  Google Scholar 

  5. Jang, S.W., Jung, M.: Robust detection of mosaic regions in visual image data. Cluster Comput. 19(4), 2285–2293 (2016)

    Article  Google Scholar 

  6. Zhao, L., Jiang, L., Dong, X.: Supervised feature selection method via potential value estimation. Cluster Comput. 19(4), 2039–2049 (2016)

    Article  Google Scholar 

  7. Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23, 228–233 (2001)

    Article  Google Scholar 

  8. Wright, J., Yang, A.Y., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009)

    Article  Google Scholar 

  9. Wright, J., Ma, Y., Mairal, J., et al.: Sparse representation for computer vision and pattern recognition. Proc. IEEE 98, 1031–1044 (2010)

    Article  Google Scholar 

  10. Deng, W., Hu, J., Guo, J.: Extended SRC: under sampled face recognition via intraclass variant dictionary. IEEE Trans. Pattern Anal. Mach. Intell. 34(9), 1864–1870 (2012)

    Article  Google Scholar 

  11. Yang, J., Zhang, L., Xu, Y., et al.: Beyond sparsity: the role of L1-optimizerin pattern classification. Pattern Recognit. 45(3), 1104–1118 (2012)

    Article  MATH  Google Scholar 

  12. Guo, S., Ruan, Q., Miao, Z.: Similarity weighted sparse representation for classification. In: International conference on pattern recognition (ICPR), pp. 1241–1244 (2012)

  13. Lu, C.Y., Min, H., Gui, J., et al.: Face recognition via weighted sparse representation. J. Vis. Commun. Image Represent. 24(2), 111–116 (2013)

    Article  Google Scholar 

  14. Li, C., Guo, J., Zhang, H.G.: Local sparse representation based classification. In: International conference on pattern recognition, pp. 649-653 (2010)

  15. Zhang, S.W., Lei, Y.K., Wu, Y.H.: Semi-supervised locally discriminant projection for classification and recognition. Knowl.-Based Syst. 24(2), 341–346 (2011)

    Article  Google Scholar 

  16. Zhang, S.W., Lei, Y.K.: Modified locally linear discriminant embedding for plant leaf recognition. Neurocomputing 74(14–15), 2284–2290 (2011)

    Article  Google Scholar 

  17. Zhao, C., Chan, S.F., Cham, W.K., et al.: Plant identification using leaf shapes—a pattern counting approach. Pattern Recognit. 48(10), 3203–3215 (2015)

    Article  Google Scholar 

  18. Munisami, Trishen, Ramsurn, Mahess, Kishnah, Somveer, et al.: Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers. Proc. Comput. Sci. 58, 740–747 (2015)

    Article  Google Scholar 

  19. Ahmed, N., UG, Khan, Asif, S.: An automatic leaf based plant identification system. Sci.Int. 28(1), 427–430 (2016)

    Google Scholar 

  20. Zhang, Shanwen, Lei, YingKe, Zhang, Chuanlei, et al.: Semi-supervised orthogonal discriminant projection for plant leaf classification. Pattern Anal. Appl. 19(4), 953–961 (2016)

    Article  MathSciNet  Google Scholar 

  21. Munisami, T., Ramsurn, M., Kishnah, S., et al.: Plant leaf recognition using shape features and colour histogram with K-nearest neighbour classifiers. Proc. Comput. Sci. 58, 740–747 (2015)

  22. Chaki, J., Parekh, R., Bhattacharya, S.: Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recognit. Lett. 58, 61–68 (2015)

    Article  Google Scholar 

  23. Hsiao, J.K., Kang, L.W., Chang, C.L., et al.: Learning sparse representation for leaf image recognition. In: IEEE International Conference on Consumer Electronics. IEEE, pp. 209–210 (2014)

  24. Jin, Taisong, Hou, Xueliang, Li, Pifan, et al.: A novel method of automatic plant species identification using sparse representation of leaf tooth features. PLoS ONE 10(10), 1–20 (2015)

    Article  Google Scholar 

  25. He, R., Hu, B.G., Zheng, W.S., et al.: Two-stage sparse representation for robust recognition on large-scale database. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10), pp. 475–480 (2014)

  26. Yong, Xu, Zhu, Qi, Fan, Zizhu, et al.: Using the idea of the sparse representation to perform coarse-to-fine face recognition. Inf. Sci. 238, 138–148 (2013)

  27. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE T Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  28. Kim, S.J., Koh, K., Lustig, M., et al.: A method for large-scale \(l_{1}\)-regularized least squares. IEEE J. Sel. Top. Signal Process. 1(4), 606–617 (2007)

    Article  Google Scholar 

  29. Canny, J.A.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the China National Natural Science Foundation under Grant Nos. 61473237 and 61309008. It is also supported by the Shaanxi Natural Science Foundation Research Project under Grant No. 2014JM2-6096.The authors would like to thank all the editors and anonymous reviewers for their constructive advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Wang, H. & Huang, W. Two-stage plant species recognition by local mean clustering and Weighted sparse representation classification. Cluster Comput 20, 1517–1525 (2017). https://doi.org/10.1007/s10586-017-0859-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0859-7

Keywords

Navigation