Skip to main content
Log in

Fast lightweight reconfiguration of virtual constellation for obtaining of earth observation big data

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Earth observation (EO) big data is playing the increasingly important role in spatial sciences. To obtain adequate EO data, virtual constellation is proposed to overcome the limitation of traditional EO facilities, by combining the existing space and ground segment capabilities. However, the current configuration pattern of virtual constellation is tightly coupled with the specific application requirements. This leads to the costly reconfigurations. Although the pattern of software defined satellite network can decouple topology reconfigurations from application requirements, it cannot be directly applied to the reconfigurations of virtual constellations because of some drawbacks. To address the problem, we propose a model of LEO-ground links control-covering (LGLC) to implement fast and lightweight reconfiguration for virtual constellation. LGLC uses a bipartite graph model to formalize the dispatch problem of the control information of virtual constellation reconfiguration, and the optimum solution can be got by the classical algorithm in polynomial time. According to the strategy obtained, only if a few satellites and stations receive the control information, virtual constellation can be reconfigured quickly. We also establish some metrics to evaluate the effect of LGLC. Extensive experiments are conducted to confirm the above claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. A time-varying graph \(G=(V,E)\) is a dynamic graph where every edge has a lifetime, and the edge is available only at a given time.

  2. Satellite Tool Kit STK: a physics-based software package from Analytical Graphics, Inc. that allows engineers and scientists to simulate complex space-ground networks.

  3. The same value (162KB) has been used in the experiments of the literature [17]

Abbreviations

\(\mathcal {T}\) :

The set of timeslots

\(V_G\) :

The set of GEO satellites

\(V_L\) :

The set of LEO satellites

\(U_L\) :

The set of LEO satellite-footprints (\(U_L=V_L\times \mathcal {T}\))

\(V_S\) :

The set of ground stations

\(C^{(l)}_m(t)\) :

The VCL consumption of satellite l covering m ground stations in timeslot t

\(C^n_{(s)}(t)\) :

The VCL consumption of station s covered by n LEO satellites in timeslot t

\(Q_1(g,u)\) :

The burden rate of the controlling endpoint g on CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))

\(Q_2(g,u)\) :

The burden rate of the controlled endpoint u on CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))

\(Q_I\) :

The global burden rate of controlling endpoints

\(Q_{II}\) :

The global burden rate of controlled endpoints

\(Q_{c}(g,u)\) :

The burden rate of CTL \(\langle g,u\rangle \) (\(g\in V_G,u\in U_L\))

\(Q_{C}\) :

The global burden rate of CTLs

\(Q_{F}\) :

CTL fairness

\(v\vdash t\) :

CTL fairness

OHL:

The one-hop link between a LEO satellite and a ground station

ISL:

The link between two LEO satellites

IGL:

The link between two ground stations

CTL:

The control link between a GEO satellite and a LEO satellite (or ground station)

VCL:

Virtual covering link

UTVG:

Unifying time-varying graph

TVG:

Time-varying graph

CC:

Control-covering

ICC:

Immediate control-covering

EO:

Earth observation

MWVC:

The minimum weighted vertex cover

References

  1. He, G., Wang, L., Ma, Y., Zhang, Z., Wang, G., Peng, Y., Long, T., Zhang, X.: Processing of earth observation big data: challenges and countermeasures. Chin. Sci. Bull. 60(5–6), 470–478 (2015)

    Article  Google Scholar 

  2. Wang, L., Song, W., Liu, P.: Link the remote sensing big data to the image features via wavelet transformation. Clust. Comput. 19(2), 793–810 (2016)

    Article  Google Scholar 

  3. Wang, L., Zhang, J., Liu, P., Choo, K.-K.R., Huang, F.: Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification. Soft Comput. 21(1), 213–221 (2017)

    Article  Google Scholar 

  4. Xia, Z., Wang, X., Sun, X., Wang, Q.: A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 27(2), 340–352 (2016)

    Article  Google Scholar 

  5. Guo, H.-D., Zhang, L., Zhu, L.-W.: Earth observation big data for climate change research. Adv. Clim. Change Res. 6(2), 108–117 (2015)

    Article  Google Scholar 

  6. Nativi, S., Mazzetti, P., Santoro, M., Papeschi, F., Craglia, M., Ochiai, O.: Big data challenges in building the global earth observation system of systems. Environ. Model. Softw. 68, 1–26 (2015)

    Article  Google Scholar 

  7. CEOS: Ceos virtual constellations process paper, technical reports, Committee of Earth Observation Satellite (CEOS) (2006)

  8. Wulder, M.A., Hilker, T., White, J.C., Coops, N.C., Masek, J.G., Pflugmacher, D., Crevier, Y.: Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 170, 62–76 (2015)

    Article  Google Scholar 

  9. Chen, Y., Mahalec, V., Chen, Y., Liu, X., He, R., Sun, K.: Reconfiguration of satellite orbit for cooperative observation using variable-size multi-objective differential evolution. Eur. J. Oper. Res. 242(1), 10–20 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kong, Y., Zhang, M., Ye, D.: A belief propagation-based method for task allocation in open and dynamic cloud environments. Knowl.-Based Syst. 115, 123–132 (2017)

  11. Dibarboure, G., Lambin, J.: Monitoring the ocean surface topography virtual constellation: lessons learned from the contribution of saral/altika. Mar. Geod. 38(sup1), 684–703 (2015)

    Article  Google Scholar 

  12. Lang, O., Weihing, D., Gressler, F., Fahrland, E., Schrader, H., Salow, D., Minguy, V., Oswald, M., Tinz, M.: Combined use of terrasar-x and radarsat-2 data-a study of a virtual constellation. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE International, pp. 3030–3033. IEEE (2012)

  13. Yoder, J.A., Dowell, M., Hoepffner, N., Murakami, H., Stuart, V.: The ocean colour radiance virtual constellation (ocr-vc). Community White Paper for OceanObs 9, (2010)

  14. Wang, L., Khan, S.U., Chen, D., KołOdziej, J., Ranjan, R., Xu, C.-Z., Zomaya, A.: Energy-aware parallel task scheduling in a cluster. Future Gener. Comput. Syst. 29(7), 1661–1670 (2013)

  15. Liu, Q., Cai, W., Shen, J., Fu, Z., Liu, X., Linge, N.: A speculative approach to spatial-temporal efficiency with multi-objective optimization in a heterogeneous cloud environment. Secur. Commun. Netw. 9(17), 4002–4012 (2016)

    Article  Google Scholar 

  16. Gopal, R., Ravishankar, C.: Software defined satellite networks. In: 32 nd AIAA International Communications Satellite Systems Conference (ICSSC) (2014)

  17. Tang, Z., Zhao, B., Yu, W., Feng, Z., Wu, C.: Software defined satellite networks: Benefits and challenges. In: Computing, Communications and IT Applications Conference (ComComAp), 2014 IEEE, pp. 127–132. IEEE (2014)

  18. Yang, B., Wu, Y., Chu, X., Song, G.: Seamless handover in software-defined satellite networking. IEEE Commun. Lett. 20(9), 1768–1771 (2016)

    Article  Google Scholar 

  19. Zeng, D., Li, P., Guo, S., Miyazaki, T., Hu, J., Xiang, Y.: Energy minimization in multi-task software-defined sensor networks. IEEE Trans. Comput. 64(11), 3128–3139 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zeng, D., Gu, L., Guo, S., Cheng, Z., Yu, S.: Joint optimization of task scheduling and image placement in fog computing supported software-defined embedded system. IEEE Trans. Comput. 65, 3702–3712 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ferrús, R., Koumaras, H., Sallent, O., Agapiou, G., Rasheed, T., Kourtis, M.-A., Boustie, C., Gélard, P., Ahmed, T.: Sdn/nfv-enabled satellite communications networks: opportunities, scenarios and challenges. Phys. Commun. 18, 95–112 (2016)

    Article  Google Scholar 

  22. Ferrús Ferré, R.A., Sallent Roig, J.O., Rasheed, T., Morelli, A., Koumaras, H., Agapiou, G., Boustie, C., Gélard, P., Mestari, R., Makis, H., et al.: Enhancing satellite & terrestrial networks integration through nfv/sdn technologies. Multimedia Communications Technical Committee. IEEE Communications Society e-Letter, vol. 10, no. 4, pp. 17–21 (2015)

  23. Ahmed, T., Dubois, E., Dupé, J.-B., Ferrús, R., Gélard, P., Kuhn, N.: Software-defined satellite cloud RAN. Int. J. Satell. Commun. Network. (2017). doi:10.1002/sat.1206

    Google Scholar 

  24. Bao, J., Zhao, B., Yu, W., Feng, Z., Wu, C., Gong, Z.: Opensan: a software-defined satellite network architecture. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 347–348. ACM (2014)

  25. Bertaux, L., Medjiah, S., Berthou, P., Abdellatif, S., Hakiri, A., Gelard, P., Planchou, F., Bruyere, M.: Software defined networking and virtualization for broadband satellite networks. IEEE Commun. Mag. 53(3), 54–60 (2015)

    Article  Google Scholar 

  26. Zeng, D., Guo, S., Barnawi, A., Yu, S., Stojmenovic, I.: An improved stochastic modeling of opportunistic routing in vehicular cps. IEEE Trans. Comput. 64(7), 1819–1829 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wehmuth, K., Ziviani, A., Fleury, E.: A unifying model for representing time-varying graphs. In: IEEE International Conference on Data Science and Advanced Analytics (DSAA), 2015, 36678, pp. 1–10. IEEE (2015)

  28. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. Int. J. Parallel Emerg. Distrib. Syst. 27(5), 387–408 (2012)

    Article  Google Scholar 

  29. Dantzig, G., Fulkerson, D.R.: On the max flow min cut theorem of networks. Linear Inequal. Relat. Syst. 38, 225–231 (2003)

    MATH  Google Scholar 

  30. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM (JACM) 44(4), 585–591 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (No. 61672474) and the Open Research Project of The Hubei Key Laboratory of Intelligent Geo-Information Processing (No. KLIGIP201611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Yao, H., Ranjan, R. et al. Fast lightweight reconfiguration of virtual constellation for obtaining of earth observation big data. Cluster Comput 20, 2299–2310 (2017). https://doi.org/10.1007/s10586-017-0905-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-0905-5

Keywords

Navigation