Skip to main content
Log in

A collaboration centric approach for building the semantic knowledge network for knowledge advantage machine

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Knowledge advantage machine (KaM) is an advanced system for knowledge exploitation. In this paper, we propose a Collaboration Centric Behavior Model, which helps one or more knowledge-workers to discover and link useful knowledge objects dubbed JANs into a semantic knowledge network. The JAN is constructed as a semantic web service to semantically present three categories of service behavior: expected service behavior that presents what requestor expects it to serve; actual service behavior that presents how it offers its service; and quality evaluation that presents whether its service behavior is consistent with requestor’s expectation by checking conformance. On the basis of the KaM architecture, we build a process model to implement to discovery a JAN and link different JANs as a personal knowledge network or a group knowledge network. This is illustrated using an academic research scenario. Experimental results show that the proposed method is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Machado, A., Maran, V., Augustin, I., Wives, L.K., de Oliveira, J.P.M.: Reactive, proactive, and extensible situation-awareness in ambient assisted living. Expert Syst. Appl. 76(15), 21–35 (2017)

    Article  Google Scholar 

  2. Castillejo, E., Almeida, A., López-de-Ipiña, D., Chen, L.: Modeling users, context and devices for ambient assisted living environments. Sensors 14(3), 5354–5391 (2014)

    Article  Google Scholar 

  3. Forkan, A., Khalil, I., Tari, Z.: CoCaMAAL: a cloud-oriented context-aware middleware in ambient assisted living. Fut. Gener. Comput. Syst. 35, 114–127 (2014)

    Article  Google Scholar 

  4. Kaldeli, E., Lazovik, A., Aiello, M.: Domain-independent planning for services in uncertain and dynamic environments. Artif. Intell. 236, 30–64 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Abbasi, A.: A longitudinal analysis of link formation on collaboration networks. J. Inf. 10(3), 685–692 (2016)

    Article  Google Scholar 

  6. Kwon, O., Son, W.-S., Jung, W.-S.: The double power law in human collaboration behavior: the case of Wikipedia. Phys. A 461, 85–91 (2016)

    Article  Google Scholar 

  7. Arazy, O., Gellatly, I., Brainin, E., Nov, O.: Motivation to share knowledge using wiki technology and the moderating effect of role perceptions. J. Assoc. Inf. Sci. Technol. 67(10), 2362–2378 (2016)

    Article  Google Scholar 

  8. Rani, M., Nayak, R., Vyas, O.P.: An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage [J]. Knowl. Based Syst. 90, 33–48 (2015)

    Article  Google Scholar 

  9. Jo, I., Jung, I.Y.: Smart learning of logo detection for mobile phone applications. Multimed. Tools Appl. 75(21), 13211–13233 (2016)

    Article  Google Scholar 

  10. Hamari, J., Sjoklint, M., Ukkonen, A.: The sharing economy: why people participate in collaborative consumption. J. Assoc. Inf. Sci. Technol. 67(9), 2047–2059 (2016)

    Article  Google Scholar 

  11. Mohaisen, M., Mohaisen, A.: Characterizing collaboration in social network-enabled routing. KSII Trans. Internet Inf. Syst. 10(4), 1643–1660 (2016)

    Google Scholar 

  12. Li, Q., Liu, S., Qu, M.: Modeling the web service behavior semantically based on the ontology. Acta Electron. Sin. 43(4), 601–604 (2015). (in Chinese)

    Google Scholar 

  13. Yahyaoui, H., Own, H.S., Malik, Z.: Modeling and classification of service behaviors. Expert Syst. Appl. 42(21), 7610–7619 (2015)

    Article  Google Scholar 

  14. Mitrevski, P.J., Hristoski, I.S.: Behavioral-based performability modeling and evaluation of e-commerce systems. Electron. Commer. Res. Appl. 13(5), 320–340 (2014)

    Article  Google Scholar 

  15. Criado, J., Rodriguez-Gracia, D., Iribarne, L., Padilla, N.: Toward the adaptation of component-based architectures by model transformation: behind smart user interfaces. Softw. Pract. Exp. 45(12), 1677–1718 (2015)

    Article  Google Scholar 

  16. Riccobene, E., Scandurra, P.: A formal framework for service modeling and prototyping. Form. Asp. Comput. 26(6), 1088–1113 (2014)

    Article  MathSciNet  Google Scholar 

  17. Getir, S., Challenger, M., Kardas, G.: The formal semantics of a domain-specific modeling language for semantic web enabled multi-agent systems. Int. J. Coop. Inf. Syst. 23, 145005 (2014). doi:10.1142/S0218843014500051

    Article  Google Scholar 

  18. Rajaram, K., Babu, C., Adiththan, A.: Dynamic transaction aware web service selection. Int. J. Coop. Inf. Syst. 23, 145004 (2014). doi:10.1142/S021884301450004X

    Article  Google Scholar 

  19. Vairetti, C., Alarcon, R.: A Semantic approach for dynamically determining complex composed service behaviour. J. Web Eng. 14(3–4), 310–338 (2016)

    Google Scholar 

  20. Canton-Puerto, D.G., Moo-Mena, F., Uc-Cetina, V.: QoS-based web services selection using a hidden Markov model. J. Comput. 12(1), 48–56 (2017)

    Google Scholar 

  21. Mehdi, M., Bouguila, N., Bentahar, J.: Trust and reputation of web services through QoS correlation lens. IEEE Trans. Serv. Comput. 9(6), 968–981 (2016)

    Article  Google Scholar 

  22. Yu, L., Motani, M., Wong, W.-C.: A QoE-aware resource distribution framework incentivizing context sharing and moderate competition. IEEE-ACM Trans. Netw. 24(3), 1364–1377 (2016)

    Article  Google Scholar 

  23. Azimi, R., Ghayekhloo, M., Ghofrani, M., Sajedi, H.: A novel clustering algorithm based on data transformation approaches. Expert Syst. Appl. 76(15), 59–70 (2017)

    Article  Google Scholar 

  24. Malinen, M., Mariescu-Istodor, R., Fränti, P.: K-means*: clustering by gradual data transformation. Pattern Recognit. 47(10), 3376–3386 (2014)

    Article  Google Scholar 

  25. Evan, S., Jonathan, L., Trevor, D.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 640–651 (2016)

    Google Scholar 

  26. Espi-Beltran, J.V., Gilart-Iglesias, V., Ruiz-Fernandez, D.: Enabling distributed manufacturing resources through SOA: the REST approach. Robot. Comput. Integr. Manuf. 46, 156–165 (2017)

    Article  Google Scholar 

  27. Liu, J., Xia, Z.: An approach of web service organization using Bayesian network learning. J. Web Eng. 16(3–4), 252–276 (2017)

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (No. 61472160). This work was supported by the Development and Reform Commission of Jilin Province (No. 2015Y041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchun Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, M., Chang, Y. A collaboration centric approach for building the semantic knowledge network for knowledge advantage machine. Cluster Comput 21, 1009–1022 (2018). https://doi.org/10.1007/s10586-017-1016-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1016-z

Keywords

Navigation