Skip to main content
Log in

Modeling and predicting execution time of scientific workflows in the Grid using radial basis function neural network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the maturity of electronic science (e-science) the scientific applications are growing to be more complex composed of a set of coordinating tasks with complex dependencies among them referred to as workflows. For optimized execution of workflows in the Grid, the high level middleware services (like task scheduler, resource broker, performance steering service etc.) need in-advance estimates of workflow execution times. However, modeling and predicting workflow execution time in the Grid is complex due to several tasks in a workflow, their distributed execution on multiple heterogeneous Grid-sites, and dynamic behaviour of the shared Grid resources. In this paper, we describe a novel method based on radial basis function neural network to model and predict workflow execution time in the Grid. We model workflows execution time in terms of attributes describing workflow structure and execution runtime information. To further refine our models, we employ principle component analysis to eliminate attributes of lesser importance. We recommend a set of only 14 attributes (as compared with total 21) to effectively model workflow execution time. Our reduced set of attributes improves the prediction accuracy by \(16\%\). Results of our prediction experiments for three real-world scientific workflows are presented to show that our predictions are more accurate than the two best methods from related work so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Aggarwal, C.C.: Outlier Analysis. Springer, New York (2013)

    Book  MATH  Google Scholar 

  2. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., de Supinski, B., Schulz, M.: A regression-based approach to scalability prediction. In: Proceedings of the 22nd Annual International Conference on Supercomputing, ICS ’08, pp. 368–377. ACM (2008)

  3. Brehm, J., Worley, P.H.: Performance prediction for complex parallel applications. In: Proceedings of the 11th International Parallel Processing Symposium, 1997, pp. 187–191. IEEE (1997)

  4. Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: Gridflow: Workflow management for grid computing. In: Proceedings of the 3rd International Symposium on Cluster Computing and the Grid, CCGRID ’03, pp. 198–206. IEEE Computer Society (2003)

  5. Cao, J., Jarvis, S.A., Spooner, D.P., Turner, J.D., Kerbyson, D.J., Nudd, G.R.: Performance prediction technology for agent-based resource management in grid environments. In: Proceedings of the 16th International Parallel and Distributed Processing Symposium, IPDPS ’02, pp. 265–274. IEEE Computer Society (2002)

  6. Carrington, L., Snavely, A., Wolter, N.: A performance prediction framework for scientific applications. Future Gener. Comput. Syst. 22(3), 336–346 (2006)

    Article  Google Scholar 

  7. Chirkin, A.M., Belloum, A.S.Z., Kovalchuk, S.V., Makkes, M.X.: Execution time estimation for workflow scheduling. In: Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, WORKS ’14, pp. 1–10. IEEE Press (2014)

  8. D. Theiner et al.: Reduction of calibration time of distributed hydrological models. In: Proceedings of the International Conference on Hydroinformatics. Acropolis, Nice (2006)

  9. Bacigalupo, D.A., et al.: An investigation into the application of different performance prediction methods to distributed enterprise applications. J. Supercomput. 34(2), 93–111 (2005)

    Article  Google Scholar 

  10. Deelman, E., Vahi, K., Juve, G., Rynge, M., Callaghan, S., Maechling, P.J., Mayani, R., Chen, W., da Silva, R.F., Livny, M., Wenger, K.: Pegasus, a workflow management system for science automation. Future Gener. Comput. Syst. 46, 17–35 (2015)

    Article  Google Scholar 

  11. Dubach, C., Cavazos, J., Franke, B., Fursin, G., O’Boyle, M.F., Temam, O.: Fast compiler optimisation evaluation using code-feature based performance prediction. In: Proceedings of the 4th International Conference on Computing Frontiers, pp. 131–142 (2007)

  12. Eder, J., Pichler, H.: Probabilistic calculation of execution intervals for workflows. In: Proceedings of the 12th International Symposium on Temporal Representation and Reasoning, 2005, TIME 2005, pp. 183–185 (2005)

  13. Eswaradass, A., Sun, X.H., Wu, M.: Network bandwidth predictor (NBP): a system for online network performance forecasting. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid, 2006, CCGRID 06, vol. 1, pp. 265–268 (2006)

  14. Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Podlipnig, S., Qin, J., Siddiqui, M., Truong, H.L., Villazon, A., Wieczorek, M.: ASKALON: A development and Grid computing environment for scientific workflows. In: Workflows for e-Science, pp. 450–471. Springer (2007)

  15. Nadeem, F., et al.: Soft benchmarks-based application performance prediction using a minimum training set. In: Proceedings of the International Conference on e-Science and Grid Computing, p. 71 (2006)

  16. Gelenbe, E., Montagne, E., Suros, R., Woodside, C.M.: A performance model of block structured parallel programs. In: International Workshop on Parallel Algorithms & Architectures. Luminy (1986)

  17. Gibbons, R.: A historical application profiler for use by parallel schedulers. In: Proceedings of the Job Scheduling Strategies for Parallel Processing. Springer (1997)

  18. Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C., Livny, M., Moreau, L., Myers, J.: Examining the challenges of scientific workflows. Computer 40(12), 24–32 (2007)

    Article  Google Scholar 

  19. Glatard, T., Montagnat, J., Pennec, X.: A probabilistic model to analyse workflow performance on production grids. In: Proceedings of the 8th IEEE International Symposium on Cluster Computing and the Grid, 2008, pp. 510–517. Lyon (2008)

  20. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18 (2009)

    Article  Google Scholar 

  21. Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Prentice-Hall, Inc., Upper Saddle River (2007)

    MATH  Google Scholar 

  22. Hiden, H., Woodman, S., Watson, P.: A framework for dynamically generating predictive models of workflow execution. In: Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science, WORKS ’13, pp. 77–87. ACM (2013)

  23. Taylor, I., et al.: Distributed computing with triana on the grid. Concurr. Comput. Pract. Exp. 17(9), 1197–1214 (2005)

    Article  Google Scholar 

  24. Ipek, E., de Supinski, B.R., Schulz, M., McKee, S.A.: An approach to performance prediction for parallel applications. In: Proceedings of the 11th International Euro-Par Conference on Parallel Processing, Euro-Par’05, pp. 196–205. Springer, Berlin, Heidelberg (2005)

  25. Iverson, M.A., Özgüner, F., Potter, L.: Statistical prediction of task execution times through analytic benchmarking for scheduling in a heterogeneous environment. IEEE Trans. Comput. 48(12), 1374–1379 (1999)

    Article  Google Scholar 

  26. Jolliffe, I.: Principal Component Analysis. Springer, New York (2002)

    MATH  Google Scholar 

  27. Kapadia, N.H., Fortes, J.A., Brodley, C.E.: Predictive application-performance modeling in a computational grid environment. In: Proceedings of the Eighth International Symposium on High Performance Distributed Computing, pp. 47–54. IEEE (1999)

  28. Kim, K.H., Ellis, C.: Performance analytic models and analyses for workflow architectures. Inf. Syst. Front. 3(3), 339–355 (2001)

    Article  Google Scholar 

  29. Lee, B.C., Brooks, D.M., de Supinski, B.R., Schulz, M., Singh, K., McKee, S.A.: Methods of inference and learning for performance modeling of parallel applications. In: Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’07, pp. 249–258. ACM (2007)

  30. Li, H., Chen, J., Tao, Y., Gro, D., Wolters, L.: Improving a local learning technique for queue wait time predictions. In: Proceedings of the Sixth IEEE International Symposium on Cluster Computing and the Grid. Singapore (2006)

  31. Li, H., Groep, D., Templon, J., Wolters, L.: Predicting job start times on clusters. In: CCGRID ’04: Proceedings of the 2004 IEEE International Symposium on Cluster Computing and the Grid, pp. 301–308 (2004)

  32. Li, H., Groep, D., Wolters, L., Templon, J.: Job failure analysis and its implications in a large-scale production grid. In: Proceedings of the Second IEEE International Conference on e-Science and Grid Computing, 2006, e-Science ’06, pp. 27–27 (2006)

  33. Li, J., Fan, Y., Zhou, M.: Performance modeling and analysis of workflow. IEEE Trans. Syst. Man Cybern. A 34(2), 229–242 (2004)

    Article  Google Scholar 

  34. Liang, D.: Dynamic prediction of critical path instructions. In: Proceedings of the 7th International Symposium on High-Performance Computer Architecture, HPCA ’01, pp. 185–193. IEEE Computer Society (2001)

  35. Liu, X., Chen, J., Liu, K., Yang, Y.: Forecasting duration intervals of scientific workflow activities based on time-series patterns. In: Proceedings of the IEEE Fourth International Conference on eScience, 2008, eScience ’08, pp. 23–30 (2008)

  36. Liu, X., Ni, Z., Yuan, D., Jiang, Y., Wu, Z., Chen, J., Yang, Y.: A novel statistical time-series pattern based interval forecasting strategy for activity durations in workflow systems. J. Syst. Softw. 84(3), 354–376 (2011)

    Article  Google Scholar 

  37. Ludäscher, B., Altintas, I., Bowers, S., Cummings, J., Critchlow, T., Deelman, E., Roure, D.D., Freire, J., Goble, C., Jones, M., Klasky, S., McPhillips, T., Podhorszki, N., Silva, C., Taylor, I., Vouk, M.: Scientific Process Automation and Workflow Management. Chapman & Hall, Boca Raton (2009)

    Book  Google Scholar 

  38. Miu, T., Missier, P.: Predicting the execution time of workflow activities based on their input features. In: High Performance Computing, Networking, Storage and Analysis (SCC), 2012, pp. 64–72 (2012)

  39. Mohr, B., Wolf, F.: Kojak—a tool set for automatic performance analysis of parallel programs. In: Euro-Par 2003 Parallel Processing, pp. 1301–1304. Springer (2003)

  40. Mussi, P., Nain, P.: Evaluation of parallel execution of program tree structures. SIGMETRICS Perform. Eval. Rev. 12(3), 78–87 (1984)

    Article  Google Scholar 

  41. Nadeem, F., Fahringer, T.: Predicting the execution time of grid workflow applications through local learning. In: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, SC ’09, pp. 33:1–33:12. ACM (2009)

  42. Nadeem, F., Fahringer, T.: Optimizing execution time predictions of scientific workflow applications in the grid through evolutionary programming. Future Gener. Comput. Syst. 29(4), 926–935 (2013)

    Article  Google Scholar 

  43. Nadeem, F., Thomas, F.: Using templates to predict execution time of scientific workflow applications in the grid. Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009, CCGRID ’09, pp. 316–323. IEEE Computer Society, Shanghai (2009)

  44. Blaha, P., et al.: WIEN2k: an Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties. Institute of Physical and Theoretical Chemistry, Vienna (2001)

    Google Scholar 

  45. Pietri, I., Juve, G., Deelman, E., Sakellariou, R.: A performance model to estimate execution time of scientific workflows on the cloud. In: Proceedings of the 9th Workshop on Workflows in Support of Large-Scale Science, WORKS ’14, pp. 11–19. IEEE Press (2014)

  46. Pllana, S., Fahringer, T.: Performance prophet: a performance modeling and prediction tool for parallel and distributed programs. In: Proceedings of the International Conference on Parallel Processing, pp. 509–516 (2005)

  47. Priore, P., Fuente, D.D.L., Gomez, A., Puente, J.: A review of machine learning in dynamic scheduling of flexible manufacturing systems. Artif. Intell. Eng. Des. Anal. Manuf. 15(3), 251–263 (2001)

    Article  MATH  Google Scholar 

  48. Prodan, R., Nadeem, F., Fahringer, T.: Benchmarking grid applications for performance and scalability predictions. In: K.C. Li, C.H. Hsu, L.T. Yang, J. Dongarra, H. Zima (eds.) Handbook of Research on Scalable Computing Technologies. IGI Global (2010). doi:10.4018/978-1-60566-661-7.ch005. http://www.igi-global.com/bookstore/TitleDetails.aspx?TitleId=498

  49. Felix, S., et al.: Performance, Scalability and quality of the meteorological grid workflow. In: Proceedings of the 2nd Austrian Grid Symposium, Innsbruck (2006)

  50. Salverda, P., Tu ker, C., Zilles, C.: Accurate critical path prediction via random trace construction. In: Proceedings of the 6th Annual IEEE/ACM International Symposium on Code Generation and Optimization, CGO ’08, pp. 64–73. ACM (2008)

  51. da Silva, R.F., Juve, G., Rynge, M., Deelman, E., Livny, M.: Online task resource consumption prediction for scientific workflows. Parallel Process. Lett. (2015). doi:10.1142/S0129626415410030

  52. Smith, W., Foster, I., Taylor, V.: Predicting application run times with historical information. J. Parallel Distrib. Comput. 64(9), 1007–1016 (2004)

    Article  MATH  Google Scholar 

  53. Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia, R., Purkayastha, A.: A framework for performance modeling and prediction. In: Supercomputing, ACM/IEEE 2002 Conference, pp. 21–21 (2002)

  54. Sodhi, S., Subhlok, J., Xu, Q.: Performance prediction with skeletons. Cluster Comput. 11(2), 151–165 (2008)

    Article  Google Scholar 

  55. Susukita, R., Ando, H., Aoyagi, M., Honda, H., Inadomi, Y., Inoue, K., Ishizuki, S., Kimura, Y., Komatsu, H., Kurokawa, M., Murakami, K.J., Shibamura, H., Yamamura, S., Yu, Y.: Performance prediction of large-scale parallell system and application using macro-level simulation. In: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing, SC ’08, pp. 20:1–20:9. IEEE Press (2008)

  56. Oinn, T., et al.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17), 3045–3054 (2004)

    Article  Google Scholar 

  57. Taylor, V., Wu, X., Geisler, J., Stevens, R.: Using kernel couplings to predict parallel application performance. In: Proceedings of the 11th IEEE International Symposium on High Performance Distributed Computing, HPDC ’02, pp. 125–139. IEEE Computer Society (2002)

  58. Tirado-Ramos, A., Tsouloupas, G., Dikaiakos, M., Sloot, P.: Grid resource selection by application benchmarking for computational haemodynamics applications. In: Computational Science, ICCS 2005, vol. 3514, pp. 534–543. Springer, Berlin, Heidelberg (2005)

  59. Vraalsen, F., Aydt, R., Mendes, C., Reed, D.: Performance contracts: Predicting and monitoring grid application behavior. In: Grid Computing, GRID 2001, vol. 2242, pp. 154–165. Springer, Berlin, Heidelberg (2001)

  60. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  61. Wolski, R., Spring, N.T., Hayes, J.: The network weather service: a distributed resource performance forecasting service for metacomputing. Future Gener. Comput. Syst. 15(5–6), 757–768 (1999)

    Article  Google Scholar 

  62. Wombacher, A., Rozie, M.: Piloting an empirical study on measures forworkflow similarity. In: Proceedings of the IEEE International Conference on Services Computing, SCC ’06, pp. 94–102. IEEE Computer Society (2006)

  63. Wu, Q., Datla, V.V.: On performance modeling and prediction in support of scientific workflow optimization. In: Proceedings of the 2011 IEEE World Congress on Services, SERVICES ’11, pp. 161–168. IEEE Computer Society (2011)

  64. Wu, X., Taylor, V., Paris, J.: A web-based prophesy automated performance modeling system. In: Proceedings of the International Conference on Web Technologies, Applications and Services (WTAS2006), pp. 17–19 (2006)

  65. Yang, L., Foster, I., Schopf, J.M.: Homeostatic and tendency-based CPU load predictions. In: Proceedings of the International Parallel and Distributed Processing Symposium, 2003, pp. 9–17. IEEE (2003)

  66. Yang, L.T., Ma, X., Mueller, F.: Cross-platform performance prediction of parallel applications using partial execution. In: Proceedings of the 2005 ACM/IEEE Conference on Supercomputing, SC ’05, pp. 40–44. IEEE Computer Society (2005)

  67. Yero, E.J.H., Henriques, M.A.A.: Contention-sensitive static performance prediction for parallel distributed applications. Perform. Eval. 63(4), 265–277 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH)—King Abdulaziz City for Science and Technology - the Kingdom of Saudi Arabia—Award Number (12-INF2716-03). The authors also, acknowledge with thanks Science and Technology Unit, King Abdulaziz University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Nadeem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadeem, F., Alghazzawi, D., Mashat, A. et al. Modeling and predicting execution time of scientific workflows in the Grid using radial basis function neural network. Cluster Comput 20, 2805–2819 (2017). https://doi.org/10.1007/s10586-017-1018-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1018-x

Keywords

Navigation