Skip to main content
Log in

Change detection methods based on low-rank sparse representation for multi-temporal remote sensing imagery

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the development of remote sensing image applications, remote sensing imagery is an important technology to make a dynamic detection for changes of lands or coastal zones. Though high resolution remote sensing imagery provides very good performance and large information for the spatial structure variation, the limitation of its spatial structure makes change detection difficult. In this paper, we propose two change detection methods for multi-temporal remote sensing images which are based on low-rank sparse decomposition and based on low-rank matrix representation. An observation matrix is constructed by ordering each band of remote sensing images into a vector. We utilize bilateral random projection method to make low rank decomposition to get a sparse matrix. We then obtain the change map by using nearest neighbor to cluster the change parts from the sparse matrix. On the other hand, by dividing the difference set of multi-temporal remote sensing images into non-overlapping squares with equal size and tiling these squares, an observation matrix is built up. We make up a feature space matrix by low rank matrix representation to build a sparse representation model, and combine nearest neighbor method to make change detection for multi-temporal remote sensing dataset. This change detection method is addressed by iterating between kernel norm minimization and sparsity minimization. The experimental results show that our proposed methods perform better in detecting changes than the other change detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hussain, M., Chen, D., Cheng, A.: Change detection from remotely sensed images: from pixel-based to object-based approaches. ISPRS J. Photogramm. Remote Sens. 80, 91–106 (2013)

    Article  Google Scholar 

  2. Singh, A.: Digital change detection techniques using remotely-sensed data. Int. J. Remote Sens. 10(6), 989–1003 (1989)

    Article  Google Scholar 

  3. Jianya, G., Haigang, S., Guorui, M., et al.: A review of multi-temporal remote sensing data change detection algorithms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37(B7), 757–762 (2008)

    Google Scholar 

  4. Araya, Y.H., Hergarten, C.: A comparison of pixel and object-based land cover classification: a case study of the Asmara region, Eritrea. WIT Trans. Built Environ. 100, 233–243 (2008)

    Article  Google Scholar 

  5. Chen, G., Hay, G.J., Carvalho, L.M.T., et al.: Object-based change detection. Int. J. Remote Sens. 33(14), 4434–4457 (2012)

    Article  Google Scholar 

  6. Ghosh, A., Mishra, N.S., Ghosh, S.: Fuzzy clustering algorithms for unsupervised change detection in remote sensing images. Inf. Sci. 181(4), 699–715 (2011)

    Article  Google Scholar 

  7. Huang, C., Song, K., Kim, S., et al.: Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 112(3), 970–985 (2008)

    Article  Google Scholar 

  8. Xiuwan, C.: Using remote sensing and GIS to analyse land cover change and its impacts on regional sustainable development. Int. J. Remote Sens. 23(1), 107–124 (2002)

    Article  Google Scholar 

  9. Vila, J.P.S., Barbosa, P.: Post-fire vegetation regrowth detection in the Deiva Marina region (Liguria-Italy) using Landsat TM and ETM+ data. Ecol. Model. 221(1), 75–84 (2010)

    Article  Google Scholar 

  10. Quarmby, N.A., Cushnie, J.L.: Monitoring urban land cover changes at the urban fringe from SPOT HRV imagery in south-east England. Int. J. Remote Sens. 10(6), 953–963 (1989)

    Article  Google Scholar 

  11. Howarth, P.J., Wickware, G.M.: Procedures for change detection using Landsat digital data. Int. J. Remote Sens. 2(3), 277–291 (1981)

    Article  Google Scholar 

  12. Rignot, E.J.M., Van Zyl, J.J.: Change detection techniques for ERS-1 SAR data. IEEE Trans. Geosci. Remote Sens. 31(4), 896–906 (1993)

    Article  Google Scholar 

  13. Johnson, R.D., Kasischke, E.S.: Change vector analysis: a technique for the multispectral monitoring of land cover and condition. Int. J. Remote Sens. 19(3), 411–426 (1998)

    Article  Google Scholar 

  14. Chen, Z., Elvidge, C.D., Groeneveld, D.P.: Vegetation change detection using high spectral resolution vegetation indices. Remote Sens. Change Change detect. Techn. 2395 (1998)

  15. Deng, J.S., Wang, K., Deng, Y.H., et al.: PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data. Int. J. Remote Sens. 29(16), 4823–4838 (2008)

    Article  Google Scholar 

  16. Jin, S., Sader, S.A.: Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances. Remote Sens. Environ. 94(3), 364–372 (2005)

    Article  Google Scholar 

  17. Celik, T., Ma, K.K.: Multitemporal image change detection using undecimated discrete wavelet transform and active contours. IEEE Trans. Geosci. Remote Sens. 49(2), 706–716 (2011)

    Article  Google Scholar 

  18. Celik, T.: Multiscale change detection in multitemporal satellite images. IEEE Geosci. Remote Sens. Lett. 6(4), 820–824 (2009)

    Article  Google Scholar 

  19. Volpi, M., Tuia, D., Bovolo, F., et al.: Supervised change detection in VHR images using contextual information and support vector machines. Int. J. Appl. Earth Obs. Geoinf. 20, 77–85 (2013)

    Article  Google Scholar 

  20. Lei, Z., Fang, T., Huo, H., et al.: Bi-temporal texton forest for land cover transition detection on remotely sensed imagery. IEEE Trans. Geosci. Remote Sens. 52(2), 1227–1237 (2014)

    Article  Google Scholar 

  21. Camps-Valls, G., Gómez-Chova, L., Muñoz-Marí, J., et al.: Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Trans. Geosci. Remote Sens. 46(6), 1822–1835 (2008)

    Article  Google Scholar 

  22. Chen K, Huo C, Zhou Z, et al.: Semi-supervised change detection via Gaussian processes. In: Geoscience and Remote Sensing Symposium, 2009 IEEE International, IGARSS 2009. IEEE, 2009, 2: II-996-II-999

  23. Roy, M., Ghosh, S., Ghosh, A.: A novel approach for change detection of remotely sensed images using semi-supervised multiple classifier system. Inf. Sci. 269, 35–47 (2014)

    Article  Google Scholar 

  24. Wu, C., Zhang, L., Zhang, L.: A scene change detection framework for multi-temporal very high resolution remote sensing images. Signal Process. 124, 184–197 (2015)

    Article  Google Scholar 

  25. Huang, X., Lu, Q., Zhang, L.: A multi-index learning approach for classification of high-resolution remotely sensed images over urban areas. ISPRS J. Photogramm. Remote Sens. 90, 36–48 (2014)

    Article  Google Scholar 

  26. Zhou, T., Tao, D.: Godec: Randomized low-rank & sparse matrix decomposition in noisy case. In: International Conference on Machine Learning. Omnipress, Madison (2011)

  27. Candès, E.J., Li, X., Ma, Y., et al.: Robust principal component analysis? J. ACM (JACM) 58(3), 11 (2011)

    Article  MathSciNet  Google Scholar 

  28. Gao, Z., Cheong, L.F., Wang, Y.X.: Block-sparse RPCA for salient motion detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(10), 1975–1987 (2014)

    Article  Google Scholar 

  29. Liu, X., Zhao, G., Yao, J., et al.: Background subtraction based on low-rank and structured sparse decomposition. IEEE Trans. Image Process. 24(8), 2502–2514 (2015)

    Article  MathSciNet  Google Scholar 

  30. Liu, G., Lin, Z., Yu, Y.: Robust subspace segmentation by low-rank representation. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10). pp. 663-670 (2010)

  31. Moody, D.I., Brumby, S.P., Rowland, J.C., et al.: Change detection and classification of land cover in multispectral satellite imagery using clustering of sparse approximations (CoSA) over learned feature dictionaries. In: Applied Imagery Pattern Recognition Workshop (AIPR), 2014 IEEE. IEEE, pp. 1–10 (2014)

  32. Xu, Y., Wu, Z., Li, J., et al.: Anomaly detection in hyperspectral images based on low-rank and sparse representation. IEEE Trans. Geosci. Remote Sens. 54(4), 1990–2000 (2016)

    Article  Google Scholar 

  33. Zhou, J.: Matrix Analysis and Application. Sichuan University Press, Chengdu (2008)

    Google Scholar 

  34. Roweis, S.T.: EM algorithms for PCA and SPCA. In: Advances in Neural Information Processing Systems, pp. 626–632 (1998)

  35. Celik, T.: Unsupervised change detection in satellite images using principal component analysis and k-means clustering. IEEE Geosci. Remote Sens. Lett. 6(4), 772–776 (2009)

    Article  Google Scholar 

  36. Bazi, Y., Bruzzone, L., Melgani, F.: An unsupervised approach based on the generalized Gaussian model to automatic change detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 43(4), 874–887 (2005)

    Article  Google Scholar 

  37. Wu, S., Bai, Y., et al.: A remote sensing image classification method based on sparse representation. Multimed. Tools Appl. 75(19), 12137–12154 (2016)

    Article  Google Scholar 

  38. Wu, S., Bai, Y., et al.: Remote sensing image noise reduction using wavelet coefficients based on OMP. Optik-Int. J. Light Electron Opt. 126(15), 1439–1444 (2015)

    Article  Google Scholar 

  39. Shulei, Wu, Bai, Yong, et al.: The optimal band combination joint WCOMP+BPNN classification method for remote sensing image. J. Comput. Inf. Syst. 11(8), 2873–2884 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61163042 and 61663007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huandong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Bai, Y. & Chen, H. Change detection methods based on low-rank sparse representation for multi-temporal remote sensing imagery. Cluster Comput 22 (Suppl 4), 9951–9966 (2019). https://doi.org/10.1007/s10586-017-1022-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1022-1

Keywords

Navigation