Skip to main content
Log in

Human activity recognition in egocentric video using PNN, SVM, kNN and SVM+kNN classifiers

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In recent years, the recognition of activity is a daring task which helps elderly people, disabled patients and so on. The aim of this paper is to design a system for recognizing the human activity in egocentric video. In this research work, the various textural features like gray level co-occurrence matrix and local binary pattern and point feature speeded up robust features are retrieved from activity videos which is a proposed work and classifiers like probabilistic neural network, support vector machine (SVM), k nearest neighbor (kNN) and proposed SVM+kNN classifiers are used to classify the activity. Here, multimodal egocentric activity dataset is chosen as input. The performance results showed that the SVM+kNN classifier outperformed other classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Matsuo, K., Yamada, K., Ueno, S., Naito, S.: An attention-based activity recognition for egocentric video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)

  2. Ji, P., Song, A., Xiong, P., Yi, P., Xiaonong, X., Li, H.: Egocentric-vision based hand posture control system for reconnaissance robots. J. Intell. Robot. Syst. 87(3–4), 583–599 (2017)

    Article  Google Scholar 

  3. Kuang, Y., Wu, Q., Shao, J., Wu, J., Wu, X.: Extreme learning machine classification method for lower limb movement recognition. Clust. Comput. (2017). doi:10.1007/s10586-017-0985-2

  4. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

  5. Cerf, M., Harel, J., Einhauser, W., Koch, C.: Predicting human gaze using low-level saliency combined with face detection. Adv. Neural Inf. Process. Syst. 20, 241–248 (2007)

    Google Scholar 

  6. Itti, L., Dhavale, N., Pighin, F.: Realistic avatar eye and head animation using a neurobiological model of visual attention. In: SPIE 48th Annual International Symposium on Optical Science and Technology, vol. 5200, pp. 64–78 (2003)

  7. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Adv. Neural Inf. Process. Syst. 19, 545–552 (2006)

    Google Scholar 

  8. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4(4), 219–227 (1985)

    Google Scholar 

  9. Itti, L., Koch, C., Neibur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  10. Avraham, T., Lindenbaum, M.: Esaliency (extended saliency); Meaningful attention using stochastic image modeling. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 693–708 (2010)

    Article  Google Scholar 

  11. Coasta, L.F.: Visual saliency and attention as random walks on complex networks. ArXiv Physics e-prints (2006)

  12. Wang, W., Wang, Y., Huang, Q., Gao, W.: Measuring visual saliency by site entropy rate. In: Computer Vision and Pattern Recognition (CVPR), pp. 2368–2375. IEEE (2010)

  13. Foulsham, T., Underwood, G.: What can saliency models predict about eye movements? Spatial and sequential aspects of fixations during encoding and recognition. J. Vis. 8(2), 1–17 (2008)

    Article  Google Scholar 

  14. Cheng, M., Zhang, G., Mitra, N., Huang, X., Hu, S.: Global contrast based salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

  15. Yamada, K., Sugano, Y., Okabe, T., Sato, Y., Sugimoto, A., Hiraki, K.: Attention prediction in egocentric video using motion and visual saliency. In: Proceedings of the 5th Pacific-Rim Symposium on Image and Video Technology (PSIVT), vol. 1, pp. 277–288, Nov 2011

  16. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked keypoints. In: IEEE International Conference on Computer Vision (2009)

  17. Lei, J., Ren, X., Fox, D.: Fine-grained kitchen activity recognition using RGB-D. In: ACM International Joint Conference on Pervasive and Ubiquitous Computing (2012)

  18. Rohrbach, M., Amin, S., Andriluka, M., Schiele, B.: A database for fine grained activity detection of cooking activities. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

  19. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)

  20. Ogaki, K., Kitani, K.M., Sugano, Y., Sato, Y.: Coupling eye-motion and ego-motion features for first-person activity recognition. In: CVPR Workshop on Egocentric Vision (2012)

  21. Taralova, E., De la Torre, F., Hebert, M.: Source constrained clustering. IEEE International Conference on Computer Vision (2011)

  22. Fathi, A., Li, Y., Rehg, J.M.: Learning to recognize daily actions using gaze. In: European Conference on Computer Vision (2012)

  23. Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities. In: IEEE International Conference on Computer Vision (2011)

  24. Ryoo. M.S., Matthies, L.: First-person activity recognition: what are they doing to me?. In: IEEE Conference on Computer Vision and Pattern Recognition (2013)

  25. Poleg, Y., Arora, C., Peleg, S.: Temporal segmentation of egocentric videos. In: IEEE Conference on Computer Vision and Pattern Recognition (2014)

  26. Bhosale Swapnali, B., Kayastha Vijay, S., HarpaleVarsha, K.: Feature extraction using surf algorithm for object recognition. Int. J. Tech. Res. Appl. 2(3), 197–199 (2014)

    Google Scholar 

  27. Pandya, M.M., Chitaliya, N.G., Panchal, S.R.: Accurate image registration using SURF algorithm by increasing the matching points of images. Int. J. Comput. Sci. Commun. Eng. 2(1), 15–19 (2013)

  28. Mohanaiah, P., Sathyanarayana, P., GuruKumar, L.: Image texture feature extraction using GLCM approach 3(5), 1 (2013)

    Google Scholar 

  29. Xia, Z., Yuan, C., Sun, X., Sun, D., Lv, R.: Combining wavelet transform and LBP related features for fingerprint liveness detection. IAENG Int. J. Comput. Sci. 43(3), 290–298 (2016)

    Google Scholar 

  30. Javid, U., Jaffar, M.A.: Object and motion cues based collaborative approach for human activity localization and recognition in unconstrained videos. Clust. Comput. (2017). doi:10.1007/s10586-017-0825-4

  31. Alahmadi, A., Hussain, M., Aboalsamh, H., Muhammad, G., Bebis, G., Mathkour, H.: Passive detection of image forgery using DCT and local binary pattern. Signal Image Video Process. 11(1), 81–88 (2017)

    Article  Google Scholar 

  32. Jayanthi, N., Indu, S.: Comparison of Image Matching Techniques. Int. J. Latest Trends Eng. Technol. 7(3), 396–401 (2016)

    Google Scholar 

  33. Verma, N.K.: Object matching using speeded up robust features. In: Intelligent and Evolutionary Systems, pp. 415-427. Springer, Berlin (2016)

  34. Bay, H., Tuytelaars, T., Van Gool, L.: Surf: speeded up robust features. In: European Conference on Computer Vision. Springer, Berlin (2006)

  35. Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)

    Article  Google Scholar 

  36. Mao, K.Z., Tan, K.C., Ser, W.: Probabilistic Neural-Network Structure Determination for Pattern Classification. IEEE Trans. Neural Networks 11(4), 1009–1016 (2000)

    Article  Google Scholar 

  37. Priya, R., Aruna, P.: Diagnosis of diabetic retinopathy using machine learning techniques. ICTACT J. Soft Comput. 3(4), 563–575 (2013)

    Article  Google Scholar 

  38. Suresha, M., Shilpa, N.A. Soumya, B.: Apples grading based on SVM classifier. In: National Conference on Advanced Computing and Communications, April 2012

  39. OpenCV: Introduction to Support Vector Machines. http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.html Accessed 22 July 2016

  40. Chaovalitwongse, W.A., Fan, Y.-J., Sachdeo, R.C.: On the time series K-nearest neighbor classification of abnormal brain activity. In: IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 37, No. 6, November 2007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Sanal Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanal Kumar, K.P., Bhavani, R. Human activity recognition in egocentric video using PNN, SVM, kNN and SVM+kNN classifiers. Cluster Comput 22 (Suppl 5), 10577–10586 (2019). https://doi.org/10.1007/s10586-017-1131-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1131-x

Keywords

Navigation