Skip to main content
Log in

Locating the critical slip surface in a slope stability analysis by enhanced fireworks algorithm

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this paper we propose an enhanced fireworks algorithm for locating the critical slip surface giving the minimum safety factor in slope stability analysis, and we employ a concise algorithm of the Morgenstern and Price method to calculate the safety factor. To demonstrate its applicability and to illustrate the reliability and effectiveness of the proposed method, we present three benchmark examples with varying complex slopes. By comparing the minimum safety factor and the total number of iterations, the proposed method is proved to be highly competitive in terms of efficiency and accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zolfaghari, R.A., Heath, A.C., McCombie, P.F.: Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput. Geotech. 32(3), 139–152 (2005)

    Article  Google Scholar 

  2. Goh, A.T.C.: Search for critical slip circle using genetic algorithms. Civil Eng. Environ. Syst. 17(3), 181–211 (2000)

    Article  Google Scholar 

  3. Khajehzadeh, M., Taha, M.R., El-Shafie, A., Eslami, M.: Search for critical failure surface in slope stability analysis by gravitational search algorithm. Int. J. Phys. Sci. 6(21), 5012–5021 (2011)

    Google Scholar 

  4. Zhu, J.F., Chen, C.F.: Search for circular and noncircular critical slip surfaces in slope stability analysis by hybrid genetic algorithm. Cent. South Univ. 21(1), 387–397 (2014)

    Article  Google Scholar 

  5. Duncan, J.M.: State of the art: limit equilibrium and finite-element analysis of slopes. Am. Soc. Civil Eng. 122(7), 577–596 (1996)

    Google Scholar 

  6. Zhu, D.Y., Lee, C.F., Qian, Q.H., Zou, Z.S., Sun, F.: A new procedure for computing the factor of safety using the Morgenstern–Price method. Can. Geotech. J. 38(4), 882–888 (2001)

    Article  Google Scholar 

  7. Celestino, T.B., Duncan, J.M.: Simplified search for non-circular slip surface. In: Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, pp. 391–394 (1981)

  8. Arai, K., Tagyo, K.: Determination of noncircular slip surface giving the minimum factor of safety in slope stability analysis. Soils Found 25(1), 43–51 (1985)

    Article  Google Scholar 

  9. Chen, Z.Y.: Random trials used in determining global minimum factors of safety of slopes. Can. Geotech. J. 29(2), 225–233 (1992)

    Article  MathSciNet  Google Scholar 

  10. Greco, V.R.: Efficient Monte Carlo technique for locating critical slip surface. J. Geotech. Eng. 122(7), 517–525 (1996)

    Article  Google Scholar 

  11. Malkawi, A.I.H., Hassan, W.F., Sarma, S.K.: Global search method for locating general slip surface using Monte-Carlo techniques. J. Geotech. Geoenviron. Eng. 53(5), 9–513 (1998)

    Google Scholar 

  12. Pham, H.T.V., Fredlund, D.G.: The application of dynamic programming to slope stability analysis. Can. Geotech. J. 40(4), 830–847 (2003)

    Article  Google Scholar 

  13. Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406(6791), 39–42 (2000)

    Article  Google Scholar 

  14. Li, Y.C., Chen, Y.M., Zhan, T.L.T., Ling, D.S., Cleall, P.J.: An efficient approach for locating the critical slip surface in slope stability analyses using a real-coded genetic algorithm. Can. Geotech. J. 47(7), 806–820 (2010)

    Article  Google Scholar 

  15. Goh, A.T.C.: Genetic algorithm search for critical slip surface in multiple-wedge stability analysis. Can. Geotech. J. 36(2), 382–391 (1999)

    Article  Google Scholar 

  16. Solati, S., Habibagahi, G.: A genetic approach for determining the generalized interslice forces and the critical non-circular slip surface. Iran. J. Sci. Technol. Trans. B Eng. 30(1), 1–20 (2006)

    Google Scholar 

  17. Cheng, Y.M., Li, L., Chi, S.C., Wei, W.B.: Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Comput. Geotech. 34(2), 92–103 (2007)

    Article  Google Scholar 

  18. Cheng, Y.M., Li, L., Chi, S.C., Wei, W.B.: Determination of the critical slip surface using artificial fish swarms algorithm. J. Geotech. Geoenviron. Eng. 134(2), 244–251 (2008)

    Article  Google Scholar 

  19. Du, S., Zhang, J., Li, J.T., Su, Q.M., Zhu, W.B., Chen, Y.J.: The deformation prediction of mine slope surface using PSO-SVM model. TELKOMNIKA Indones. J. Electr. Eng. 11(12), 7182–7189 (2013)

    Google Scholar 

  20. Kahatadeniya, K.S., Nanakorn, P., Neaupane, K.M.: Determination of the critical failure surface for slope stability analysis using ant colony optimization. Eng. Geol. 108(1), 133–141 (2009)

    Article  Google Scholar 

  21. Kang, F., Li, J.J., Ma, Z.Y.: An artificial bee colony algorithm for locating the critical slip surface in slope. Eng. Optim. 45(2), 207–223 (2013)

    Article  MathSciNet  Google Scholar 

  22. Tan, Y., Zhu, Y.C.: Fireworks algorithm for optimization. Lect. Notes Comput. Sci. 21(7), 355–364 (2010)

    Article  Google Scholar 

  23. Zheng, S.Q., Andreas, J., Tan, Y.: Enhanced fireworks algorithm. In: 2013 IEEE Congress on Evolutionary Computation(CEC), IEEE, pp. 2069–2077. IEEE (2013)

  24. Goswami, D., Chakraborty, S.: A study on the optimization performance of fireworks and cuckoo search algorithms in laser machining processes. J. Inst. Eng. 96(3), 215–229 (2015)

    Google Scholar 

  25. Imran, A.M., Kowsalya, M.: A new power system reconfiguration scheme for power loss minimization and voltage profile enhancement using fireworks algorithm. Int. J. Electr. Power Energy Syst. 62, 312–322 (2014)

    Article  Google Scholar 

  26. Morgenstern, N.R., Price, V.E.: The analysis of the stability of general slip surfaces. Géotechnique 15(1), 79–93 (1965)

    Article  Google Scholar 

  27. Chen, Z.Y., Morgenstern, N.R.: Extensions to the generalized method of slices for stability analysis. Can. Geotech. J. 20(1), 104–119 (1983)

    Article  Google Scholar 

  28. Zhu, D.Y., Lee, C.F., Qian, Q.H., Chen, G.R.: A concise algorithm for computing the factor of safety using the Morgenstern–Price method. Can. Geotech. J. 42(1), 272–278 (2005)

    Article  Google Scholar 

  29. Yamagami, T.: Search for noncircular slip surfaces by the Morgenstern–Price method. In: Proceedings 6th International Conference on Numerical Methods in Geomechanics, pp. 1335–1340 (1988)

  30. Cheng, Y.M., Li, L., Lansivaara, T., Chi, S.C., Sun, Y.J.: An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis. Eng. Optim. 40(2), 95–115 (2008)

    Article  Google Scholar 

  31. Bolton, H., Heymann, G., Groenwold, A.: Global search for critical failure surface in slope stability analysis. Eng. Optim. 35(1), 51–65 (2003)

    Article  Google Scholar 

  32. Fredlund, D.G., Krahn, J.: Comparison of slope stability methods of analysis. Can. Geotech. J. 14(3), 429–439 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for fruitful discussions with Dr. Jun Zheng from Zhejiang University, China. The first author also appreciates very much the support to this research of China Three Gorges University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeyun Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Z., Tian, B. & Lu, X. Locating the critical slip surface in a slope stability analysis by enhanced fireworks algorithm. Cluster Comput 22 (Suppl 1), 719–729 (2019). https://doi.org/10.1007/s10586-017-1196-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-017-1196-6

Keywords

Navigation